

Introduction ... 3

Prerequisites .. 3

Planning, design and implementation ... 3
Size the server hardware appropriately .. 3
Prepare for database growth ... 4

Service Manager Diagnostics .. 4
Reports ... 4
sm.alert.log parameters .. 10
sm –util ... 13
Minimizing debugging output .. 13

Debugging Foreground / User processes .. 13
Debugging background processes .. 13
Debugging a Web Services connection .. 14
Which parameters to use .. 14

Debugging parameters ... 14
Database debugging .. 14
Application debugging ... 21
Other debugging parameters ... 24
Server debugging ... 27

Tuning Service Manager ... 34
Tuning Service Manager Server ... 34

Vertical Scaling .. 35
Horizontal Scaling .. 35
Mechanisms behind the scaling environment ... 36
IR processing in scaled environments .. 39
Web Services in scaled environments ... 39
Application tailoring considerations in the clustering environment .. 39
High availability setup for horizontal scaling ... 40
Scaling Environment Administration/Troubleshooting .. 42
Web Services - Service Manager as Web Services provider .. 43
IR Tuning for Performance .. 45

Tuning Database Queries .. 46
General Database Tuning hints .. 46
Tuning queries by Background Processes ... 46
Tuning frequently used foreground queries .. 47

Tuning database behavior ... 47
The Oracle® database .. 48
The SQL Server® database .. 48
The DB2® database .. 48

Service Manager Diagnostics and Tuning

Best Practices for diagnosing issues in Service Manager and tuning

Service Manager for best performance

Tuning tailoring .. 49
Tuning forms .. 49
Format Control ... 50
Data Validation – which one when ... 50
JavaScript® / ScriptLibrary ... 51
Scripts ... 51
Wizards .. 51
Links ... 51
Display ... 51
Document Engine ... 52

Tuning integrations ... 52

Regular Maintenance ... 52
Backups .. 52
Purging and Archiving .. 52
Log file maintenance .. 54

Appendix A .. 55
Optimizing Service Manager performance on the RDBMS .. 55

Optimizing for speed .. 55
Optimizing for reporting ... 55
Service Manager modifications .. 55
Tuning indexes ... 55

For more information .. 57

3

Introduction

Service Manager®, the premier consolidated service desk offering from HP Software, is a

comprehensive and fully integrated IT Service Management (ITSM) software product that enables IT

professionals to improve service levels, balance resources, and optimize costs. Along with the ability

to have a custom-made service desk come both the need to ensure that tailoring does not negatively

impact the system’s performance, and the ability to diagnose potential issues.

When collecting requirements for an implementation, it is important to remember that the business

process drives the tool, and not the other way around. To simplify implementation, Service Manager

contains pre-existing, ITIL®-certified best practice guidelines for the Service Desk, Incident

Management, Change Management, and Problem Management modules.

When you approach an implementation, begin with a detailed process diagram. Present the out-of-

the-box settings as an option to enhance your business processes. Conduct an exercise that includes

input from members of all areas that will use the system to make sure that business processes flow

smoothly. Then, Service Manager will be readily accepted when implemented; and only a one-time

setup is required, so that you do not have to make adjustments and enhancements after every user

acceptance test.

When system features are customized without proper planning and careful implementation, there are

associated costs, including system errors and performance concerns. It is important to remember that

most performance issues will only manifest themselves under high load.

The purpose of this guide is to raise awareness of those factors that can cause performance concerns

if they have not been considered during the design and implementation phases of a project.

Moreover, the goal of this document is to outline best practices to ensure the smooth operation of your

system and to set the stage for a stable, scalable, and efficient system. Finally, this white paper

discusses both diagnostic tools and best practices to ensure that the tailored system performs properly.

Prerequisites

You must have extensive knowledge of Service Manager and System Administrator access to the

Service Manager system.

Planning, design and implementation

Size the server hardware appropriately

For specific information for Service Manager server hardware configurations please refer to the

Service Manager sizing reference guide. In addition, the following guidelines provide a usable metric:

1. Add up the requirements for each and every application on the server including the operating

system.

2. Review the performance information and memory usage for each product to determine minimum

requirements based on use.

3. Determine what expectations there will be for each application. If one application talks to

another, consider each as a separate user/process rather than a single one.

Remember that additional servers are needed to act as development and test environments. The

hardware requirements for those environments need not be the same as those for the production

environment unless these environments need to be an exact duplicate of the production environment.

If stress testing is to be done, it is recommended that the load/stress testing environment mimics the

production environment to provide more accurate test results.

http://support.openview.hp.com/selfsolve/documents

4

Prepare for database growth

Make sure to allow for growth of the database according to your projected data volume, allow for

dynamic allocation of additional space in the Service Manager table space.

Service Manager Diagnostics

This section discusses Service Manager parameters that can be used to diagnose an issue, debug a

process, or get an overview of the software’s health. If an issue occurs that needs detailed diagnosis

by HP Software Customer Support, send your representative all requested information, which usually

includes the sm.log file, captured outputs, and the sm.alert.log file.

Reports

Service Manager offers multiple reports that help you monitor the state of your system. To generate

these reports enter the command as listed below in a command prompt (such as the DOS command

prompt) from the Service Manager Server RUN directory. The reports, and the parameters that

generate them, are listed and discussed below:

sm -reportcache

The sm -reportcache command generates a report that displays the Service Manager Cache

statistics. Sample output:

---------------------- Cache Statistics ----------------------

Slot use: 66%; Average Slot Depth: 1; Maximum Slot Depth: 8

The cache is organized as a tree. The slot depth indicates the amount of levels deep within the tree. If

the tree has too many levels, finding a single branch takes too long. Increasing the tree width to

minimize the number of levels deep will make searches against the cache more efficient.

If the average slot depth is higher than 5, HP recommends that you increase the cache_slots

parameter in the sm.ini file. The cache slots describe the width of the tree. The default cache_slots

value is 2003 and this parameter should always be a prime number for optimum performance. If the

slot depth is a lot larger than the recommended depth, set the cache_slots parameter to a significantly

larger number, until the average slot depth arrives at a number less than 5. Another related parameter

is the cache_clean_interval parameter. This parameter determines the interval at which the cache_slots

will be cleaned up for reuse.

sm -reportdbstats

The sm –reportdbstats command generates a report that displays database usage statistics. To

gather database statistics, include the dbstats parameter in the sm.ini file and restart the Service

Manager server. Sample output (excerpt):

---------------------- Database Statistics ----------------------

Filename Selects Inserts Updates Deletes Counts Sorts Finds

Cache Inits Cache Terms Cache Finds

format 0 0 0 0 0 0 27

 0 1 150

displayoption 0 0 0 0 0 0 0

 0 1 0

info 88 1 1 0 0 0 0

 80 94 0

triggers 69 0 0 0 0 0 0

 0 1 0

stathistory 8 8 0 0 0 0 0

 40 56 0

5

sm -reportipc

The sm –reportipc command is an alias for the sm –reportsem command. See the section sm -

reportsem below for detailed information about the report that both commands generate.

sm -reportlbstatus

The sm -reportlbstatus command generates a report that displays the LoadBalancer status. It

returns information only when running in vertical or horizontal scaling mode. If not running in scaling

mode, it returns the message “Couldn't obtain loadBalancer info.” Sample output:

Load Balancer Status:Fri Aug 29 09:41:13 PDT 2008

HP Service Manager LoadBalancer Running on Host:server.domain.com

Port:13701

List of Hosts:

HostName: server.domain.com

 httpPorts:null

 httpsPorts:null

 maxprocesses:5

 threadsperprocess:50

----------------ServletNodes---

Process

ID

ClusterAddress Http

Port

Https

Port

Sess

ions

Debug

Mode

Quiesce

Mode

Load

Balancer

1128 192.168.1.1:2361 13704 13705 0 N N N

4296 192.168.1.1:2355 13702 13703 0 N N N

5372 192.168.1.1:2351 13701 13702 0 N N Y

---------------ClassicNodes--

 ProcessID ClusterAddress

 4752 127.127.1.1:2367

 520 127.127.1.1:2372

sm -reportlic

The sm –reportlic command generates a report that displays the Service Manager license

information, such as its expiration date, its licensed platforms and features, and license usage both in

total numbers and per licensed module at the time of the report. If this report indicates that all

licenses are in use, no more users can log into the system.

This report helps you troubleshoot problems you may encounter trying to use certain features. If a

feature is not listed in the licensed modules, the user is not authorized to use that feature. However,

SysAdmin users may sometimes have access to features for which they are not licensed. Sample

output:

--- HP Service Manager License Report ---

Permanent License.

Server Quiesced State : Allow All Logins

Licensed Module Useage Named(Licensed) Float(Licensed)

 IR Expert(Foundation) Enabled

 Configuration Management(Foundation) 0(25) 0(25)

 Desktop Administration(Foundation) 0(25) 0(25)

 Self Service Ticketing(HelpDesk) UnLimited

 Incident Management(HelpDesk) 0(100) 0(100)

 Service Desk(HelpDesk) 0(100) 0(100)

 Problem Management(HelpDesk) 0(100) 0(100)

 Scheduled Maintenance(HelpDesk) 0(100) 0(100)

 RAD Compiler 0(0) 0(25)

 Service Catalog 0(100) 0(0)

 Change Management 0(100) 0(100)

6

 Request Management 0(100) 0(100)

 Service Level Management 0(100) 0(100)

Contract Management 0(100) 0(100)

Asset Contracts Management 0(100) 0(100)

Knowledge Management 0(100) 0(100)

Knowledge Management ESS 0(100) 0(0)

 HP SCAuto SDK for MVS(SCAuto) Enabled

 HP SCAuto SDK for Unix/Windows(SCAuto) Enabled

The Server Quiesced State can have the following values:

Value Description

Allow All Logins No restrictions

Allow System administrators

only

Only users with the SysAdmin capability word can log in. Users already in the system

are not affected.

Allow none No additional logins are allowed. Users already in the system are not affected.

sm -reportlanguages

This report lists all the supported language settings:

Language CP Description

==================== ===== ==

iso8859-1 819 ISO 8859-1 (Western European Latin-1)

8859-1 819 ISO 8859-1 (Western European Latin-1)

iso8859-2 912 ISO 8859-2 (Central European Latin-2)

8859-2 912 ISO 8859-2 (Central European Latin-2)

iso8859-5 915 ISO 8859-5 (Cyrillic)

8859-5 915 ISO 8859-5 (Cyrillic)

iso8859-7 813 ISO 8859-7 (Greek)

8859-7 813 ISO 8859-7 (Greek)

iso8859-9 920 ISO 8859-9 (Turkey Latin-5)

8859-9 920 ISO 8859-9 (Turkey Latin-5)

iso8859-11 8741 ISO 8859-11 (Thai)

8859-11 8741 ISO 8859-11 (Thai)

iso8859-15 922 ISO 8859-15 (Euro, Finnish, Estonian Latin-9)

8859-15 922 ISO 8859-15 (Euro, Finnish, Estonian Latin-9)

koi8-r 921 Kod Obmena Informatsiey, Russian, Bulgarian

koi8-u 1124 Kod Obmena Informatsiey, Ukranian

utf-8 884 UTF-8

utf8 884 UTF-8

mswin874 874 MS cp874 Thai

mswin932 9932 MS cp932 Japanese (almost Shift-JIS)

mswin936 936 MS cp936 Simplified Chinese

mswin949 949 MS cp949 Korean

mswin950 950 MS cp950 Traditional Chinese

mswin1250 1250 MS cp1250 Central European

mswin1251 1251 MS cp1251 Russian, Bulgarian, Serbian

mswin1252 1252 MS cp1252 Latin/Western European

mswin1253 1253 MS cp1253 modern Greek

mswin1254 1254 MS cp1254 Turkish

mswin1257 1257 MS cp1257 Estonian, Latvian, Lithuanian

sjis 932 Shift-JIS

sm -reportlocks

The sm –reportlocks command generates a report that displays current resource locks in the

system. If a single resource has multiple lock requests, then users have to wait for the first exclusive

7

lock to be released. Usually this situation resolves itself within a few milliseconds. If the situation

does not resolve itself, the user holding the exclusive lock may have to be forced off the system by

issuing a kill command from the system status screen. If multiple users have a lock on an IR

(Information Retrieval) file, this may indicate either a very inefficient query being executed or a

corrupt IR file that must be repaired with an IR regen. Sample output:

--- Resource Locks ---

Resource Name: ocml;1002 Number: 0

PID Session TID Lock Request Time Type Killable Waiting

005780 000022 00001276 03/21/2007 07:39:52 Exclusive Y N

Resource Name: ocmq;Q1001 Number: 0

PID Session TID Lock Request Time Type Killable Waiting

005780 000022 00001276 03/21/2007 07:39:52 Exclusive Y N

Resource Name: probsummary;IM1007 Number: 0

PID Session TID Lock Request Time Type Killable Waiting

005780 000022 00001276 03/21/2007 07:39:15 Exclusive Y N

Resource Name: agent:KMUpdate Number: 0

PID Session TID Lock Request Time Type Killable Waiting

001508 000021 00004332 03/21/2007 06:29:07 Shared Y N

Resource Name: agent:linker Number: 0

PID Session TID Lock Request Time Type Killable Waiting

001508 000014 00004168 03/21/2007 06:29:00 Shared Y N

Resource Name: agent:lister Number: 0

PID Session TID Lock Request Time Type Killable Waiting

001508 000013 00005304 03/21/2007 06:28:59 Shared Y N

Resource Name: agent:problem Number: 0

PID Session TID Lock Request Time Type Killable Waiting

001508 000008 00004196 03/21/2007 06:28:53 Shared Y N

sm -reportsem

The sm –reportsem command generates a report that displays Service Manager semaphore

information. The sm –reportipc command generates the same output. The report indicates

whether a semaphore is available and, if so, how often it was used. Each semaphore is responsible

for one or many shared memory categories. To release a hung semaphore, use the following

command: sm -releasesem:n, where n is the number of the semaphore. (For example, the User

chain semaphore has number 6.) Sample output:

pid (3444) HP Service Manager diagnostic report follows:

--- Reportsem ---

[0]System Available count(22)

[1]Application cache Available count(1108)

[2]Shared memory Available count(6889)

[3]IR Expert Available count(2)

[4]Licensing Available count(677)

[5]Resource manager Available count(2424)

[6]User chain Available count(71)

[7]Cache manager Available count(73276)

[8]Publish/Subscribe Available count(10)

[9]Database Services Available count(45146)

[10]Alert Services Available count(0)

[11]User Stats Chain Available count(40)

8

sm -reportshm

The sm -reportshm command generates the Shared Memory report, which shows the Service

Manager server’s release information, the current size of shared memory as defined in the sm.ini

file, segment and large block allocation, total unused and free space, as well as total allocations and

detailed allocation information per shared memory category. The unused space and free space totals

are usually not identical, but should be very close. A large discrepancy between free and unused

space (>20 %) indicates a problem. If the unused space falls below 25%, HP Software recommends

that you increase the amount of shared memory defined in the sm.ini file. To adjust the shared

memory in the sm.ini the Service Manager server must be down. Refer to the Service Manager Shared

Memory Guide whitepaper for an initial shared memory size recommendation. To get the best shared

memory size for your system, start with this recommendation and then generate a Shared Memory

report at a time of highest load after the system has been running for a few days. Adjust the shared

memory setting so that at the highest load free space is between 35% and 45%. Sample output:

pid (4328) HP Service Manager diagnostic report follows:

------ Shared Memory ------

Shared Memory Release 7.1

Current Size 32000000

Segment Allocation 3837400

Large Block Allocation 4024064

Unused Space 24138536 (75%)

Free Space 24357104 (76%)

Shared Memory Type Allocations Frees Allocated

------------------ ----------- ----------- -----------

Not named 299 191 56128

User blocks 0 0 0

Messages 0 0 0

Resource locks 165 84 7696

Database Services 78 0 10224

Cache overhead 3 0 10256

Application cache 1291 163 1523728

DBDICT cache 3653 1 4833824

SQL descriptor cache 166 0 308112

Join/ERD/Type cache 590 0 779904

String Type cache 180 10 23008

JavaScript Members 7 0 720

IR Expert cache 370 0 89248

Publish/Subscribe 2 0 48

Web cache 0 0 0

Threads 0 0 0

sm -reportpub

The sm -reportpub command generates the Publish House report, which lists the Marquees that

are regularly updated by the system and their values. Although the report still exists in Service

Manager 7, the output will say --- Publish House is empty ---, since Marquees are no longer used in

Service Manager.

sm -reportstatus

The sm –reportstatus command has three sections: Shared Memory, Semaphores and Processes. The

Shared Memory section displays information on shared memory such as the size, the starting address

(Mapped at), and the Owner of system resources. In the Semaphores section, it displays the

http://support.openview.hp.com/selfsolve/documents
http://support.openview.hp.com/selfsolve/documents
http://support.openview.hp.com/selfsolve/documents

9

Semaphore Name, Owner, and Grant information. The Processes section lists the owner and user of

each process, the user ID of the owner (UID), the process thread ID (PTID), the process ID (PID), the

NTID, a name for the process, idle time, whether it is started locally or remotely, and the command

that started the process. Sample output (excerpt):

pid (7096) HP Service Manager diagnostic report follows:

---- Shared Memory ----

Release : 7.1.0

Mapped at: 0x03020000

Size : 0x01E84800 - 32000000 bytes

Resource Name: SM.SHRM.13701

Owner: DOMAIN\user

Group: DOMAIN\Domain Users

Grant: NT AUTHORITY\Authenticated Users rw- ReadControl WriteDacl

WriteOwner

Grant: NT AUTHORITY\SYSTEM rw- ReadControl WriteDacl WriteOwner

---- Semaphores ----

Semaphore Name: SM.LOCK.13701.0

Owner: DOMAIN\user

Group: DOMAIN\Domain Users

Grant: NT AUTHORITY\Authenticated Users --- ReadControl WriteDacl

WriteOwner

Grant: NT AUTHORITY\SYSTEM --- ReadControl WriteDacl WriteOwner

---- Processes ----

Owner User UID PTID PID NTID Name Idle

Lc/Rmt Command

user user 1 -1 5372 5412 ThreadControllerId-13701 02:09:03

Local sm -loadBalancer -httpPort:13701

user user 2 -1 4296 5536 ThreadControllerId-13702 02:09:04

Local sm -httpPort:13702 -httpsPort:13703

user user 3 -1 1128 5148 ThreadControllerId-13704 02:09:00

Local sm -httpPort:13704 -httpsPort:13705

user user 4 -1 4752 6048 system.start 02:08:39

Local sm system.start

user user 6 6936 4752 6936 spool 00:03:57

Local sm system.start

sm -reportvirtualmap:pid

The sm -reportvirtualmap:pid command generates a report that displays the virtual memory

map for a single process, on Windows systems only. It writes output to the sm.log file. This report

can be used to determine the shared_memory_address parameter if Service Manager fails to start due

to an address conflict. To find the best address, first convert your shared memory size to a

hexadecimal number, such as 0x01E84800 – 32000000. Then go through the list as shown below

and search for an area that has at least as much free space. The same technique can be used on a

single process ID (PID) if that PID has issues loading into memory. For example:

 0x7C9C1000-0x7CBBD000 (0x001FC000) r-x i

C:\WINDOWS\system32\VERSION.dll

 0x7F6F0000-0x7F6F7000 (0x00007000) r-x s UNKNOWN

10

Calculation: 0x7cbc0000 (end of shell32.dll + padding) + 0x01E84800 (size
needed for shared memory) = 0x7EA44800

Based on this calculation, the end address of shared memory, if we set the start at 0x7cbc0000

behind the shell32.dll will still leave room to grow until we reach the next used memory segment at

0x7F6F0000.

Sample output (excerpt):

 DUMPING VIRTUAL MEMORY MAP FOR PID 1776: sm system.start

 Process Memory Map - User address space extends from 0x00010000 to

0x7FFEFFFF

 Start End (Size) Name

 0x00010000-0x00011000 (0x00001000) rw- UNKNOWN

 0x00260000-0x00276000 (0x00016000) r-- s

\Device\HarddiskVolume1\WINDOWS\system32\unicode.nls

 0x00280000-0x002BD000 (0x0003D000) r-- s

\Device\HarddiskVolume1\WINDOWS\system32\locale.nls

 0x002C0000-0x00301000 (0x00041000) r-- s

\Device\HarddiskVolume1\WINDOWS\system32\sortkey.nls

 0x00310000-0x00316000 (0x00006000) r-- s

\Device\HarddiskVolume1\WINDOWS\system32\sorttbls.nls

 0x00350000-0x00351000 (0x00001000) r-- i

C:\scs\sm701\server\RUN\pthreadVC2.dll

 0x00370000-0x00373000 (0x00003000) r-- s

\Device\HarddiskVolume1\WINDOWS\system32\ctype.nls

 0x00380000-0x0038A000 (0x0000A000) rw- UNKNOWN

 0x00400000-0x00401000 (0x00001000) r-- i

C:\scs\sm701\server\RUN\sm.exe

 0x00410000-0x00411000 (0x00001000) r-- i

C:\scs\sm701\server\RUN\LIBEAY32.dll

 0x00411000-0x004B2000 (0x000A1000) --x i

 0x01330000-0x01430000 (0x00100000) rw- UNKNOWN

 Size of IMAGES : 73637888

 Size of shared memory : 35368960

 Size of readonly memory : 8192

 Size of writable memory : 79667200

 Size of other memory : 16297984

 TOTAL SIZE : 204980224

RTE D Total number of recorded stacks: 0

The memory indicated here is used by all threads in the process. The shared memory number

indicates the amount of shared_memory in the sm.ini file.

sm.alert.log parameters

The sm.alert.log file can be found in the Service Manager server logs directory or in the path

specified by the -alertlog:PATHSPEC parameter. It contains information about system performance

such as queries that take a long time to execute, and system health such as shared memory shortage.

The following alert categories are entered into the sm.alert.log file:

 Limits

 Mapping

 Performance

 Stalled

Each of these alert categories has a list of alert types that describe the conditions that triggered the

alert (missing numbers are obsolete in Service Manager). These alert types are:

11

 Limits

o Limits-2: A user's virtual memory usage exceeds the alertvirtuallimit parameter. The

alert item lists the name of the user.

o Limits-3: A user's CPU usage exceeds the alertcpulimit parameter. The alert item lists

the name of the user.

o Limits-4: The system shared memory is critically close to full.

 Mapping

o Mapping-1: A database field has been truncated and mapped in a compressed

format. The alert item lists the truncated file and field names.

o Mapping-2: There is a duplicate mapping for a single SQL field. The alert item lists

the file name with the duplicate mapping. The alert text lists the field names with the

duplicate mapping.

o Mapping-3: A query could not be translated into SQL. The alert item lists the file

name. The alert text lists the query and the function that could not be translated into

SQL.

o Mapping-4: There is a field that cannot be used in an SQL query because of its data

type. The alert item lists the file and field names.

 Performance

o Performance-1: There has been a non-keyed query request that exceeds the

alertquerylimit parameter. The alert item lists the name of the file that was the target

of the query. You can avoid this alert by creating a key to satisfy the query.

o Performance-2: There has been a partially keyed query request that exceeds the

alertquerylimit parameter. The alert item lists the name of the file that was the target

of the query. You can avoid this alert by creating a key to satisfy the query.

o Performance-3: The system has been waiting for a query to return a result but the

query has exceeded the alertwaitlimit parameter. The alert item lists the name of the

lock.

o Performance-4: The system has been waiting for a lock to release a resource, but the

lock has exceeded the alertholdlimit parameter. The alert item lists the name of the

lock.

o Performance-5: There has been a query request that exceeds the alertquerylimit

parameter. The alert item lists the name of the file that was the target of the query.

You can avoid this alert by creating a key to satisfy the query.

o Performance-6: There has been a query request that exceeds the alerthitratio

parameter. The alert item lists the name of the file that was the target of the query.

You can avoid this alert by creating a key to satisfy the query.

 Stalled

o Stalled-3: The IR irqueue is stalled. The number of records in the irqueue exceeds

the alertirqueuelimit parameter.

o Stalled-6: The IR irqueue is stopped. The first record in the irqueue is not changing.

sm -alertquerylimit:nnnn

If the number of milliseconds a Service Manager query takes to execute exceeds the number defined

in this parameter, a message is written to the sm.alert.log file. The default value is 0, which turns

off this type of alert. The message will look like the following:

RTE I Performance-5-probsummary, Query (open.time>'01/01/01 00:00:00' and

open.time<'01/01/08 00:00:00' and update.time>'01/01/01 00:00:00' and

update.time<'01/01/08 00:00:00') took 328 milliseconds to complete;

user(falcon), application(cc.search), panel(select)

12

sm -alerthitratio:nn%

If the hit ratio for records inspected to records selected during a query exceeds the percentage

specified, an alert will be written to the sm.alert.log file. The default value is 90%. The message

will look like the following:

RTE I Performance-6-problemtype, Hit Ratio not achieved on file

problemtype and query (active=true and limited.given.level2#"enquiry" and

company="DEFAULT"): Of 157 records checked, 154 did not match the query

; user(falcon), application(display), panel(fdisp.1)

sm -alertwaitlimit:nnnn

If a user had to wait longer than nnnn milliseconds for a lock to be released, an alert is written to the

sm.alert.log file. The default value for this type of alert is 0, which means that no alerts are

being issued.

RTE I Performance-4-probsummary;IM1001, Held resource

(probsummary;IM1001) for 34860 milliseconds ; user(falcon),

application(se.unlock.object), panel(unlock)

sm -alertholdlimit:nnnn

This parameter defines the number of milliseconds (nnnn) a lock can be held before writing an alert to

the sm.alert.log file. By default, the alert is turned off (value 0).

RTE I Performance-4-probsummary;IM1001, Held resource

(probsummary;IM1001) for 34860 milliseconds ; user(falcon),

application(se.unlock.object), panel(unlock)

The following three parameters monitor the size of the Service Manager internal queue files:

sm -alertirqueuelimit:nnnn

If the number of records in the irqueue file exceeds nnnn, an alert is written to the sm.alert.log

file. By default, this type of alert is disabled (with default value 0).

sm -alertcpulimit:n

This parameter defines the number of standard deviations from the mean CPU usage that cause the

Service Manager server to issue an alert message. The default value is 5.

sm -alertvirtuallimit:nnnK

This parameter defines the number (nnn) of kilobytes of virtual memory used that cause the Service

Manager server to issue an alert message. This alert is turned off by default (value 0).

sm -alertfilters

This parameter defines the names of alerts that you want the Service Manager server to filter out of

alert messages so that Service Manager no longer posts alert messages from these alert categories

into the sm.alert.log file. By default, all activated alerts are written to the sm.alert.log file,

with no filtering.

You can use an asterisk (*) at the end of the alert name to specify all alerts within that category. For

example, to filter out all performance alerts, type: alertfilters:Performance*.

You can use a semicolon to list additional alert names. For example, to specify all mapping alerts

and a long running query alert against the contacts file, type:

alertfilters:Mapping*;Performance-5-contacts

13

sm –util

The Service Manager Database utilities can be used to perform actions similar to the Database

Manager utility within Service Manager. Use only as directed by customer support

Important: The reset option will delete all records within the table, the remove option will delete all

records as well as the dbdict. Use these options only when directed to by customer support.

HP Service Manager Database Exerciser

(Version: 7.01.053 Build: 053) [09/15/2008 14:48:47]

 add: add cls: close cnt: count

 del: delete dis: display fnd: find

 get: get nxt: next opn: open

 pat: patch prv: previous qbe: qbe rck: read keys

 reg: ir regen rst: reset

 rmv: remove upd: update vrir: verify IR

x: EXIT

Enter your choice:

Minimizing debugging output

The secret to successful debugging is to debug only the error situation, avoiding log files that are too

big to process. To debug only the error situation, first find out if the issue occurs on a user process or

a background process.

Debugging Foreground / User processes

If the issue is on a user process, add the debugging parameters to the server sm.ini file, and then

ask the user to connect with the Windows client and immediately remove the debugging parameters

from the sm.ini again. Ask the user to perform the steps causing the issue, and then log out

immediately. This minimizes the number of user connections being traced. Another possibility is to

start a separate debugnode for that user to connect to in a load balanced environment. This separate

node will have to be started with the debugnode switch, so that the loadBalancer does not distribute

processes to that port and the node is only available for direct connections. The listener would be

started by entering the following command:

sm –httpPort:<port#> -httpsPort:<port#> -debugnode -log:debug.log –RTM:3

Then the user can change the connection settings on the client to the new httpPort parameter and re-

create the issue.

Debugging background processes

If the issue occurred in a background process, it is best to create a debug background process that

can be reused when needed. Follow these steps:

1. Go to Database Manager.

2. Select the Format info.startup.

3. Search for the background process you want to debug, such as alert.startup.

4. Add the word DEBUG to the end of the name; for example, alert.startupDEBUG.

5. Click the Add button.

6. In the array to the right, enter the debug parameters, such as –RTM:3, –debugdbquery:999, and –

log:debug.log.

7. Click Save.

8. Go to System Status.

14

9. Stop the existing background process by using k in the command column in front of the process, or

by using s. Click on execute command. If you used s click Stop Scheduler. Using k kills the

process immediately, and using s followed by Stop Scheduler stops the process once it is safe

(with no more I/O or locks).

10. Click Start Scheduler and select the debug version of the background schedule from the list to start

the debug process.

11. Execute the steps leading up to the issue. Stop the debug background process again and start the

regular background process as discussed in the previous steps.

These steps limit the number of processes that are traced.

Important: Use the debug parameters necessary, while avoiding “over-debugging” the issue

(where you trace additional steps or users that do not help troubleshoot the issue).

Debugging a Web Services connection

Web Services connect to Service Manager via the SOAP API. Debugging Web Services can add a

lot of information into the sm.log file. To minimize that, you can start a separate node for the Web

Service in a load balanced environment and debug only that servlet, similar to debugging a

foreground user.

sm –httpPort:<port#> -httpsPort:<port#> -debugnode -log:WSdebug.log –

debughttp –debugdbquery:999

Once the servletcontainer is started, redo the WSDL2JS (Web Services Description Language to

JavaScript tool) from that new port number, recompile all JavaScript®, and recreate the issue.

Which parameters to use

Running debug on the system can have a performance impact and should be used cautiously as

described above. This paragraph lists situations commonly encountered, where tracing a single

process will help to fix the issue.

 Performance issues:

o RTM:3

o debugdbquery:999

o sqldebug:1

 RAD application issues (such as unrecoverable errors)

o RTM:3 (if in a trigger, use dbtriggertrace:3,<filename> instead)

o debugdbquery:999

 Issues with data retrieval from a relational database

o debugdbquery:999

o sqldebug:1

 Issues with Service Manager server startup

o debugstartup

o debugdbquery:999, if the startup issue may be data related

o For a vertical or horizontal scaling implementation, to check nodes joining the group

use logdebuglevel:0 (this trace generally creates large output).

Debugging parameters

Please use these parameters only as directed by HP Software Customer Support. Debugging without

specific indications for use of the parameters will negatively impact performance.

Database debugging

debugdbquery

The debugdbquery tracing parameter is called as follows:

15

 debugdbquery:n: Lists all queries in the sm.log file that took longer than n seconds to complete.

 debugdbquery:999: Lists all queries, and database access in the sm.log file.

The debugdbquery trace is most often used to determine the cause of performance issues, or to trace

incorrect application behavior.

Sample output:

D (0x012B9540) DBACCESS - Cache Init against file datadict

D (0x012B9540) DBACCESS - Cache Find against file datadict found 1

record, query: name="info"

D (0x0131D4D0) DBACCESS - Select against file globallists

D (0x012B9540) >DBACCESS - Cache Init against file datadict

D DBQUERY^F^probsummary(P4)^10^1.000000^F^1^0.341000^"flag#true"^

^0.000000^0.000000

D DBQUERY^F^probsummary(P4)^10^1.000000^I^100^8.462000^

"action#"printer""^ ^0.000000^0.000000 (,)

Explanation:

What was executed Always the value of DBQUERY, DBACCESS DBFIND or DBCOUNT

Where was it executed F or B (Foreground or Background)

Which file/table and what

database type

The name of the file/table and the type of database in which the file/table resides.

Which index was used to

retrieve the data

The number of the index that was selected (position in dbdict)

Note: An asterisk (*) behind the key number indicates that the key was chosen because

of the sort fields and not because of the query fields.

The system always favors using a key that satisfies the sort over the query because then a

re-sort of the data is not required.

Weight assigned to the

chosen Index

The weight calculation is: 1/(pos(field in query) * pos(field in key)^2)

The result of the calculation is used to determine which index in the dbdict is most efficient

for the query.

Query type Full (F), Partial (P), True (T), Non keyed (N), or IR key (I)

Record count The number of records returned by the query. The DBQUERY entry is put into the log after

processing the SELECT panel.

Number of seconds to

return result

The amount of time it took to return the query results

Query The query submitted by the user or application

Sort fields Sort criteria for the returned data (entered by the user or application)

Time to extract the results The amount of time it took to find all the records that match the query criteria (without sort

time)

Time to sort the results If a re-sort was necessary because an index was not present that matched the requested

sort, then the sort time contains the amount of time it took to sort all the retrieved records.

-ir_trace:n

This parameter, usually called as ir_trace:801, provides detail for IR searches, adds, and updates.

It writes the name and path of the IR file, the query or update / add statement, and weighting

information into the sm.log file.

The parameter takes parameter values from 0 to 900, where values between 850 and 900 should

not be used since they produce too much output that affects performance negatively.

 0: No trace

 1: Log select response times

 5: Same as 1 plus logs changes in access to IR files (open, close, and reopen)

16

 101: Same as 5 plus traces high level accesses to IR (search, insert, update, delete)

 200: Same as 101 plus logs some stats on terms used by the query

 201: Same as 200 plus tracing on frequencies of TERMS and weighing of documents

 801: Same as 201 plus tracing of low-level access to IR (information on terms and keys, for

example)

 850: Same as 801 plus low-level space management calls (allocating space, creating new

TERM/DOC, and so forth)

 900: Same as 850 plus, if using the ir_max_shared parameter, includes shared memory

management tracing

Sample output of the ir_trace:801 parameter – Search (excerpt):

RTE D IR: Just opened file ..\DATA\ir.probsummary with value 00000000

RTE D IR: Data for file ..\DATA\ir.probsummary loaded using 0x00000000

RTE D IR Query against file ir.probsummary - 0

RTE D parsing test printer

RTE D Dump of PARSING

RTE D 0000: 74657374 20707269 6E746572 [printer]

RTE D SearchTerm: printer

RTE D Dump of hex key value

RTE D 0000: 7072696E 746572 [printer]

RTE D SearchTerm: return code = 0 -

RTE D Dump of hex return value

RTE D 0000: []

RTE D Query data: printer

RTE D Dump of Query

RTE D 0000: 74657374 20707269 6E746572 [printer]

RTE D Parsed token: printer

RTE D Dump of Token

RTE D 0000: 7072696E 746572 [printer]

RTE D Term value printer located

RTE Dit is in 1 documents with total frequency of 2

RTE Dthat would give it an IDF-MF weight of 5.955827

RTE Dthat would give it an IDF-ND weight of 5.356709

RTE DIt has an ADL MF weight of 0.000000

RTE D Normalized values for term printer mf = 0.565855 nd = 0.574315

RTE D IR: It took 62 milliseconds to read the terms

RTE D Starting to spread term printer with weight 0.565855 to its 1

documents

RTE D document 4630226 weight increased by 0.282927 as it contains term

printer

RTE D document 4630226 weight increased by 0.282927 as it contains term

printer

RTE D document at offset 4630226 added to set with weight 0.565855

RTE D Query with 1 term found 1 documents

RTE D ...which spread to 0 other terms resulting in 0 documents

sqldebug:n

This parameter enables a trace of the SQL statements sent to the RDBMS, including settings and

performance data in the sql diff statements. It accepts numbers 1 through 4 as parameters, with the

higher numbers giving additional information:

sqldebug:1: Logs all the SQL statements executed, logs most calls into the RDBMS API, and queries for

defined indexes for any table that is being opened

sqldebug:2: In addition to the sqldebug:1 output, it also dumps out all the bind variables that are not

binary (not BLOB, RAW, IMAGE, VARBINARYetc.)

17

sqldebug:3: In addition to the sqldebug:2 output, this also dumps up to the first 256 bytes of binary

bind variables

sqldebug:4: Same as sqldebug:3 with the exception that this option increases the dump to the first

100,000 bytes of binary bind variables

Sample output:

RTE InitHash called for file scldapconfig with 12 fields

RTE sqociInitSqlda: COUNTER, type: 4-FLOAT (was 2-NUMBER), len: 8

RTE sqociInitSqlda: LDAPHOST, type: 9-VARCHAR (was 1-VARCHAR2), len: 72

RTE sqociInitSqlda: LDAPPORT, type: 9-VARCHAR (was 1-VARCHAR2), len: 72

RTE sqociInitSqlda: LDAPBASE, type: 9-VARCHAR (was 1-VARCHAR2), len: 72

RTE sqociInitSqlda: LDAPSSL, type: 96-CHAR (was 96-CHAR), len: 1

RTE sqociInitSqlda: LDAPSSLDBPATH, type: 9-VARCHAR (was 1-VARCHAR2),

len: 72

RTE sqociInitSqlda: LDAPSSLCLIENTAUTH, type: 96-CHAR (was 96-CHAR),

len: 1

RTE sqociInitSqlda: LDAPSSLKEYPATH, type: 9-VARCHAR (was 1-VARCHAR2),

len: 32

RTE sqociInitSqlda: SYSMODTIME, type: 5-STRING (was 12-DATE), len: 21

RTE sqociInitSqlda: SYSMODUSER, type: 9-VARCHAR (was 1-VARCHAR2), len:

62

RTE sqociInitSqlda: SYSMODCOUNT, type: 4-FLOAT (was 2-NUMBER), len: 8

RTE PREPARE SELECT m1."COUNTER" FROM SCLDAPCONFIGM1 m1 ORDER BY

m1."COUNTER" ASC

RTE sql diff 0.031 total 0.031 call#:1 --> Connecting to Oracle

server 'xxx' as user 'xxx'

RTE Connected to Oracle Version 10.2.0.1.0

RTE Oracle Database 10g Express Edition Release 10.2.0.1.0 - Production

RTE OCI Client settings for language, territory and character set:

AMERICAN_AMERICA.AL32UTF8

RTE PREPARE SELECT PARAMETER, VALUE FROM NLS_DATABASE_PARAMETERS WHERE

PARAMETER IN ('NLS_TERRITORY', 'NLS_LANGUAGE', 'NLS_CHARACTERSET')

RTE sql diff 0.000 total 0.031 call#:2 --> Prepare Direct SQL::SELECT

PARAMETER, VALUE FROM NLS_DATABASE_PARAMETERS WHERE PARAMETER IN (

'NLS_TERRITORY', 'NLS_LANGUAGE', 'NLS_CHARACTERSET')

RTE sql diff 0.000 total 0.031 call#:3 --> Fetch next Direct

SQL::SELECT PARAMETER, VALUE FROM NLS_DATABASE_PARAMETERS WHERE PARAMETER

IN ('NLS_TERRITORY', 'NLS_LANGUAGE', 'NLS_CHARACTERSET')

RTE sql diff 0.000 total 0.031 call#:4 --> Fetch next Direct

SQL::SELECT PARAMETER, VALUE FROM NLS_DATABASE_PARAMETERS WHERE PARAMETER

IN ('NLS_TERRITORY', 'NLS_LANGUAGE', 'NLS_CHARACTERSET')

RTE sql diff 0.000 total 0.031 call#:5 --> Fetch next Direct

SQL::SELECT PARAMETER, VALUE FROM NLS_DATABASE_PARAMETERS WHERE PARAMETER

IN ('NLS_TERRITORY', 'NLS_LANGUAGE', 'NLS_CHARACTERSET')

RTE sql diff 0.000 total 0.031 call#:6 --> Fetch next Direct

SQL::SELECT PARAMETER, VALUE FROM NLS_DATABASE_PARAMETERS WHERE PARAMETER

IN ('NLS_TERRITORY', 'NLS_LANGUAGE', 'NLS_CHARACTERSET')

sqldebug:3 - Sample output:

RTE sqInitRelation()

RTE sqmkDoInit(): tuserp->sqmk_nSqlDebug set level=3

RTE sqmkbuildFieldTab()

RTE sqmkFindField()

RTE sqInitialize(): return=0

RTE sqFetch()

RTE GetList()

RTE sqQbe()

RTE sqmkFetchCommon()

RTE sqmkbuildFieldTab()

18

RTE sqmkKeyNames()

RTE sqmkFieldName(): return=0

RTE sqmkKeyNames(): keyNames=m1.FILENAME

RTE createSortOrder()

RTE createSortOrder(): return=0

RTE sqmkKeyNames()

RTE sqmkFieldName(): return=0

RTE sqmkKeyNames(): keyNames=m1.FILENAME ASC

RTE where()

RTE whereCondition()

RTE where(): return=0

RTE sqmkEquiJoin()

RTE tableNames()

RTE tableNames(): return=0

RTE Connected to Oracle Version 10.2.0.1.0

RTE OCI Client settings for language, territory and character set:

AMERICAN_AMERICA.WE8MSWIN1252

RTE sqQbeCallback(): return=0

RTE sqQbeCallback()

RTE sqmkbuildFieldTab()

RTE sqmkFindField()

RTE sqSetKey()

RTE sqQbeCallback(): return=0

RTE sqQbe(): return=0

RTE GetList(): return=0

RTE EvalRecord()

RTE sqmkSelect()

RTE searchCondition(): return=0

RTE sqmkSelect()

RTE sqPrimaryKey()

RTE sqFetch()

RTE GetList()

RTE GetList(): return=9

RTE EvalRecord()

RTE sqmkbuildFieldTab()

RTE sqmkCheckForFld()

RTE sqmkCheckForFld(): return=TRUE

RTE sqmkCheckForFld(): return=FALSE

RTE sqmkFieldName()

RTE sqmkFindField()

RTE sqmkFieldName(): fldName=FILENAME

RTE sqmkFieldName(): return=0

RTE sqPrimaryKey()

debugadhocsql

This parameter enables debugging of the adhocsql functionality, which is used for example when

using the multi-level field chooser from the advanced filter in Service Manager search screens.

Sample output (excerpt):

RTE D adhocOpenCursor: original SQL query: SELECT file.alias01,*,

file.alias02,wdManagerName AS

probsummary_assignment_assignment_name_assignment_wdManagerName FROM

probsummary alias01 LEFT OUTER JOIN assignment alias02 ON (

file.alias01,assignment = file.alias02,name) WHERE (index("MA",

file.alias02,wdManagerName)>0)

 RTE D Alias provided: alias01

 RTE D JOIN CLAUSE provided: LEFT OUTER JOIN assignment alias02 ON (

file.alias01,assignment = file.alias02,name)

 RTE D Alias provided: alias02

 RTE D Dump of Original Query

19

 RTE D 0000: 66696C65 2E616C69 61733031 2C617373 [file.alias01,ass]

 RTE D 0010: 69676E6D 656E743D 66696C65 2E616C69 [ignment=file.ali]

 RTE D 0020: 61733032 2C6E616D 65 [as02,name]

 RTE D Dump of Validated Query

 RTE D 0000: 66696C65 2E616C69 61733031 2C617373 [file.alias01,ass]

 RTE D 0010: 69676E6D 656E743D 66696C65 2E616C69 [ignment=file.ali]

 RTE D 0020: 61733032 2C6E616D 65 [as02,name]

 RTE the original dbdict

 RTE D Field Name L Idx T RC Alias SQL Fieldname

Type DBMERGE Options

 RTE D descriptor 0 1 9 F **NULL** **NULL**

NULL **NULL** **NULL**

 RTE D number 1 1 2 F m1 NUMBER

VARCHAR2(90) **NULL** **NULL**

 RTE D number.vj.slo 1 1 2 F **NULL** **NULL**

NULL **NULL** **NULL**

 RTE D category 1 2 2 F m1 CATEGORY

VARCHAR2(50) **NULL** **NULL**

 RTE the NEW dbdict

 RTE D Field Name L Idx T RC Alias SQL Fieldname

Type DBMERGE Options

 RTE D descriptor 0 1 9 F **NULL** **NULL**

NULL **NULL** **NULL**

 RTE D number 1 1 2 F **NULL** **NULL**

NULL **NULL** **NULL**

 RTE D number.vj.slo 1 1 2 F **NULL** **NULL**

NULL **NULL** **NULL**

 RTE D category 1 2 2 F **NULL** **NULL**

NULL **NULL** **NULL**

 RTE D Dump of Original Query

 RTE D 0000: 696E6465 7828224D 41222C20 66696C65 [index("MA", file]

 RTE D 0010: 2E616C69 61733032 2C77644D 616E6167 [.alias02,wdManag]

 RTE D 0020: 65724E61 6D65293E 30 [erName)>0]

 RTE D Dump of Validated Query

 RTE D 0000: 696E6465 7828224D 41222C20 66696C65 [index("MA", file]

 RTE D 0010: 2E616C69 61733032 2C77644D 616E6167 [.alias02,wdManag]

 RTE D 0020: 65724E61 6D65293E 30 [erName)>0]

 RTE D Dump of _splitQuery - Query 0 - 0

 RTE D 0000: 74727565 [true]

 RTE D Dump of _splitQuery - Query 0 - 0

 RTE D 0000: 74727565 [true]

 RTE D Dump of _splitQuery - Query 1 - 1

ldapstats:1

This parameter is used to debug LDAP connections. Sample output:

[OpenLDAP] ldap_search_ext

[OpenLDAP] put_filter: "(&(cn=joe employee)(sn=*))"

[OpenLDAP] put_filter: AND

 [OpenLDAP] put_filter_list "(cn=joe employee)(sn=*)"

[OpenLDAP] put_filter: "(cn=joe employee)"

[OpenLDAP] put_filter: simple

[OpenLDAP] put_simple_filter: "cn=joe employee"

[OpenLDAP] put_filter: "(sn=*)"

[OpenLDAP] put_filter: simple

[OpenLDAP] put_simple_filter: "sn=*"

[OpenLDAP] ldap_send_initial_request

[OpenLDAP] ldap_new_connection

[OpenLDAP] ldap_int_open_connection

20

[OpenLDAP] ldap_connect_to_host: TCP hostname:389

[OpenLDAP] ldap_new_socket: 19

[OpenLDAP] ldap_prepare_socket: 19

[OpenLDAP] ldap_connect_to_host: Trying 127.0.0.1:389

[OpenLDAP] ldap_connect_timeout: fd: 19 tm: -1 async: 0

[OpenLDAP] ldap_ndelay_on: 19

[OpenLDAP] ldap_is_sock_ready: 19

[OpenLDAP] ldap_ndelay_off: 19

[OpenLDAP] ldap_open_defconn: successful

[OpenLDAP] ldap_send_server_request

[OpenLDAP] ldap_result msgid 1

[OpenLDAP] ldap_chkResponseList for msgid=1, all=1

[OpenLDAP] ldap_chkResponseList returns NULL

[OpenLDAP] wait4msg (infinite timeout), msgid 1

[OpenLDAP] wait4msg continue, msgid 1, all 1

[OpenLDAP] ** Connections:

[OpenLDAP] * host: hostname port: 389 (default)

[OpenLDAP] refcnt: 2 status: Connected

[OpenLDAP] last used: Wed Feb 9 22:02:54 2005

[OpenLDAP] ** Outstanding Requests:

[OpenLDAP] * msgid 1, origid 1, status InProgress

[OpenLDAP] outstanding referrals 0, parent count 0

[OpenLDAP] ** Response Queue:

[OpenLDAP] Empty

[OpenLDAP] ldap_chkResponseList for msgid=1, all=1

[OpenLDAP] ldap_chkResponseList returns NULL

[OpenLDAP] ldap_int_select

[OpenLDAP] read1msg: msgid 1, all 1

[OpenLDAP] ldap_read: message type search-entry msgid 1, original id 1

[OpenLDAP] wait4msg continue, msgid 1, all 1

[OpenLDAP] ldap_free_connection: refcnt 1

[OpenLDAP] adding response id 1 type 101:

[OpenLDAP] ldap_parse_result

Ldap query: (&(cn=joe employee)(sn=*)) Base Directory: t=dom return 1

rows. query time: 0.051000 sort time: 0.000000

[OpenLDAP] ldap_get_dn

LDAP fetch: DN returned for row: cn=joe employee,ou=PRGN,ou=HP,o=DOM

[OpenLDAP] ldap_explode_dn

[OpenLDAP] => ldap_bv2dn(t=dom,0)

[OpenLDAP] <= ldap_bv2dn(t=dom,0)=0

[OpenLDAP] ldap_explode_dn

[OpenLDAP] => ldap_bv2dn(cn=joe employee,ou=PRGN,ou=HP,o=DOM,0)

dbmonitorfiles

This parameter is used to monitor updates on files. It is called in the following format

dbmonitorfiles:<filename1>,<filename2>, …

with at least one filename passed in. Sample output:

DBMONITOR(Update) file:(operator) key:(name=falcon) Application:(login)

Label:(set.last.login.1) User:(falcon)

DBMONITOR(Insert) file:(schedule) key:(schedule.id=2571707)

Application:(apm.problem.change.state) Label:(sched.add) User:(falcon)

DBMONITOR(Update) file:(probsummary) key:(number=IM10001)

Application:(apm.save.problem) Label:(update.go) User:(falcon)

21

DBMONITOR(Insert) file:(activity) key:(number=IM10001,negdatestamp=70412

08:21:31,thenumber=001A658) Application:(sm.activity)

Label:(add.activity) User:(falcon)

debugdbtypes

This trace is used during SQL to SQL mapping. This parameter is used to document data type

conflicts while converting to an RDBMS, to help with troubleshooting unexpected binary type

mappings.

dbstats

This parameter starts collecting database statistics after the next restart of the server. To print out the

information gathered with this parameter, run sm –reportdbstats. Refer to a sample output in the

section sm -reportdbstats on page 4.

Application debugging

-RTM:n or rtm:n

RTM stands for Response Time Monitor. This trace can be used to check performance data as well as

for detailed application tracing.

Valid parameter variations for n are:

 2: Provide performance feedback. Client Response, Server Response, Network Response as well

as CPU delta on display of a form. The response times are accumulative since the last form was

displayed.

 3: Same information as on RTM:2 plus detailed RAD application tracing (application name, panel

name, CPU delta)

 4: Same information as RTM:3 plus which RAD function was called how often from the last format

response to this one

 5: Same information as RTM:4, just the count of RAD functions are counted per panel rather than

from format to format.

RTM:2 and RTM:3 will produce output at the end of each transaction that indicates response time and

memory usage for the transaction. For example:

RTE D Total: 2.578 -- RAD: 2.468 JS: 0.110 Database: 0.000 LDAP: 0.000

LoadManager: 0.000 (CPU 2.312)

RTE D Memory: D(1344857) S(1965247) O(1239296)

The memory numbers indicate:

 D: Memory delta from the previous transaction. This value could be positive or negative.

 S: Number of bytes of storage allocated by Service Manager. This does not include shared

memory or memory that is not directly allocated by Service Manager.

 O: Overhead associated with the internal memory manager.

A complete RTM trace will contain the following types of information:

RTM

Level

Sample Output:

3 RTE D RADTRACE 0 [0] login

check.version decision CPU(0 15)

3 RTE D RADTRACE 0 [0] login

prompt.for.password rio CPU(0 15)

2 RTE D Response for format: login.prompt.g in application:

login,prompt.for.password, option:0

2 RTE D Total: 0.000 -- RAD: 0.000 JS: 0.000 Database: 0.000 LDAP:

0.000 LoadManager: 0.000 (CPU 0.015)

4 RTE D ... 2 calls made to ';' (1)

4 RTE D ... 63 calls made to '=' (2)

22

4 RTE D ... 7 calls made to ' and ' (4)

4 RTE D ... 8 calls made to 'not ' (5)

4 RTE D ... 3 calls made to '<=' (7)

4 RTE D ... 15 calls made to '=' (8)

4 RTE D ... 5 calls made to '~=' (9)

4 RTE D ... 2 calls made to '>=' (10)

4 RTE D ... 9 calls made to '+' (12)

4 RTE D ... 12 calls made to 'if ' (19)

4 RTE D ... 4 calls made to 'if ' (20)

4 RTE D ... 1 calls made to 'configure' (115)

4 RTE D ... 1 calls made to 'loop' (119)

4 RTE D ... 6 calls made to 'parse' (122)

4 RTE D ... 6 calls made to 'evaluate' (123)

4 RTE D ... 2 calls made to '+=' (128)

4 RTE D ... 2 calls made to 'param2' (134)

4 RTE D ... 4 calls made to ' isin ' (215)

4 RTE D ... 1 calls made to 'scmsg' (238)

2 RTE D - End of Transaction -

3 RTE D RADTRACE 0 [0] login

call.user.login user.login CPU(16 31)

3 RTE D Calling RAD trigger trigger.operator.check for file operator

3 RTE D RADTRACE 0 [0] trigger.operator.check start

process CPU(0 31)

3 RTE D RADTRACE 0 [0] trigger.operator.check

init.company rinit CPU(0 31)

3 RTE D RADTRACE 0 [0] trigger.operator.check

select.company select CPU(0 31)

3 RTE D RADTRACE 0 [0] trigger.operator.check

process.rules process CPU(0 31)

3 RTE D RADTRACE 0 [0] trigger.operator.check

do.password.check decision CPU(0 31)

3 RTE D RADTRACE 0 [0] trigger.operator.check

RADReturn Unknown CPU(0 31)

3 RTE D Finished RAD trigger trigger.operator.check for file operator

3 RTE D Calling RAD trigger trigger.operator.stamp for file operator

3 RTE D RADTRACE 0 [0] trigger.operator.stamp start

process CPU(0 31)

3 RTE D RADTRACE 0 [0] trigger.operator.stamp

RADReturn Unknown CPU(0 31)

3 RTE D Finished RAD trigger trigger.operator.stamp for file operator

3 RTE D Calling RAD trigger trigger.apm for file operator

dbtriggertrace

The dbtriggertrace parameter is used to debug code executed in the Service Manager triggers. You

call it as follows:

dbtriggertrace:<trace level>,<filename1>,<filename2>, …

The trace level defaults to 3. The different trace levels are:

1 or 2: Information given is Calling Trigger, Finished trigger, or trigger not defined on the file.

D Calling RAD trigger trigger.operator.check for file operator

D Finished RAD trigger trigger.operator.check for file operator

D Trigger type 1 not defined for file schedule

D Trigger type 2 not defined for file schedule

3 or 4: Same as 1 and 2, plus RAD trace.

D Calling RAD trigger trigger.operator.check for file operator

23

D RADTRACE 15 [0] trigger.operator.check start process

CPU(46 46)

D RADTRACE 15 [0] trigger.operator.check init.company rinit

CPU(0 46)

D RADTRACE 15 [0] trigger.operator.check select.company select

CPU(0 46)

D RADTRACE 15 [0] trigger.operator.check process.rules process

CPU(0 46)

D RADTRACE 15 [0] trigger.operator.check do.password.check

decision CPU(0 46)

D RADTRACE 15 [0] trigger.operator.check RADReturn Unknown

CPU(0 46)

D Finished RAD trigger trigger.operator.check for file operator

debugjavascript

This debug parameter writes detailed information on calls to JavaScript code in the Service Manager

applications. It can be used to find out which fields were used by the JavaScript, or to find in which

function within the application an error occurred. Sample output (excerpt):

D Created new js context d67690

D Pinning Global object d8af48 using address 1fab257c

D CJsCode: storing JS context 1fab2570

D Compiling javascript function 1FB49650 <internal>

D Pinning Function object d8bf58 using address 1fb76320

D CJsCode: storing JS context 1fab2570

D Calling JS_GetProperty with context d67690 and system

D Calling JS_GetProperty with context d67690 and library

D Calling JS_GetProperty with context d67690 and

triggersContactsOperators

D Created package class version 0 for triggersContactsOperators

D Compiling package triggersContactsOperators...

D CJsCode: storing JS context 1fab2570

D Calling JS_GetProperty with context d67690 and syncContactToOperator

D Executing package triggersContactsOperators to access functions...

D Executing javascript using context d67690

D -> added function syncOperatorToContact

D Pinning Function object d8c1a0 using address 1fb76d68

D -> added function syncContactToOperator

D Pinning Function object d8c1d0 using address 1fb76da0

D -> added function printConRec

D this: 1faddca8d, field:, datum: 130d890d, own: false

D Cleaning - this: 1faae7d8d, field:, datum: 130d890d, own: false

D Executing javascript 'triggersContactsOperators' using context d67690

D this: 1faae3c0d, field:full.name, datum: 130d890d, own: false

D Cleaning - this: 1faae3c0d, field:full.name, datum: 130d890d, own:

false

D this: 1faae3c0d, field:full.name, datum: 130d8b0d, own: false

D Cleaning - this: 1faae3c0d, field:full.name, datum: 130d8b0d, own:

false

D this: 1faae3c0d, field:email, datum: 130d890d, own: false

D Cleaning - this: 1faae3c0d, field:email, datum: 130d890d, own: false

D this: 1faae3c0d, field:contact.name, datum: 130d8b0d, own: false

D Cleaning - this: 1faae3c0d, field:contact.name, datum: 130d8b0d, own:

false

D this: 1faae3c0d, field:fax, datum: 130d890d, own: false

D Cleaning - this: 1faae3c0d, field:fax, datum: 130d890d, own: false

D this: 1faae3c0d, field:fax, datum: 130d8b0d, own: false

D Cleaning - this: 1faae3c0d, field:fax, datum: 130d8b0d, own: false

D Cleaning - this: 1faae868d, field:, datum: 130d850d, own: false

D Called to finalize object d8bec0, part of class system

24

D Cleaning - this: 1faddca8d, field:, datum: 130d890d, own: false

D Called to finalize object d8c4d0, part of class library

Other debugging parameters

debugevaluator:n

The debugevaluator parameter accepts numbers 1 through 3 as parameters. The higher the number,

the more detailed the information.

debugevaluator:1

This trace provides messages detailing the creation, deletion and use of RAD threads by the

applications. Sample output (excerpt):

 RTE D Callback for evusr

 RTE D ThreadFindByID 0

 RTE D ThreadFindByID - return 0

 RTE D ThreadFindByID 0

 RTE D ThreadFindByID - return 0

 RTE D Switching 0 -> 0

 RTE D ThreadFindByID 0

 RTE D ThreadFindByID - return 0

 RTE D Switching 0 -> 0

 RTE D ThreadFindByID 0

 RTE D ThreadFindByID - return 0

 RTE D Switching 0 ->

debugevaluator:2

This trace shows when different RAD threads get suspended, awakened, and switched. An AGstate

gets created for every RAD panel, whenever a subroutine is called, or an expression gets evaluated.

Sample output (excerpt):

RTE D Suspending the RAD 'call' panel

RTE D Suspend = 0x0e3ba600 Next = 0x00000000 AGState = 0x0e31bbc0

RTE D evsuspend for evusr

RTE D Suspend = 0x0e3bb140 Next = 0x0e3ba600 AGState = 0x0e31bbc0

RTE D Create = 0x0e2c0c60 Prev = 0x0e31bbc0 Thread = 0 RAD =

apm.build.inbox.list,shell

RTE D evsuspend for evusr

RTE D Suspend = 0x0e374200 Next = 0x00000000 AGState = 0x0e2c0c60

RTE D Create = 0x0e382270 Prev = 0x0e2c0c60 Thread = 0 RAD =

fillcombo,fillcombo.problem

RTE D Create = 0x0e381a90 Prev = 0x0e382270 Thread = 0 RAD =

fillcombo,select

RTE D Delete = 0x0e381a90 Prev = 0x0e382270 Thread = 0 RAD =

fillcombo

RTE D Create = 0x0e381a90 Prev = 0x0e382270 Thread = 0 RAD =

fillcombo,select

RTE D Delete = 0x0e381a90 Prev = 0x0e382270 Thread = 0 RAD =

fillcombo

RTE D Create = 0x0e381a90 Prev = 0x0e382270 Thread = 0 RAD =

fillcombo,select

RTE D Delete = 0x0e381a90 Prev = 0x0e382270 Thread = 0 RAD =

fillcombo

debugsqlmapping:n

This debugsqlmapping:n parameter prints out the mapping information for the file to convert from

SQL to SQL into the sm.log file. It takes parameters from 1 to 4.

debugsqlmapping:1:

25

 Prints the dbdict passed into and returned by the sqlmap rtecall and the dbdict representation in the

database itself.

 Prints the request and response between the System Definition utility and the server.

debugsqlmapping:2: In addition to the information provided by debugsqlmapping:1 this option also:

 Provides information on why a table is treated as a system table even if there is no sqlsystemtable

record. For example, because it was already mapped as a system table before adding the new

fields.

 Issues a message why the mapping was internally treated as a REPLACE MAPPING. For example

because the dbdict passed into the rtecall was not yet mapped at all.

 Prints progress concerning generation of ALTER TABLE and CREATE TABLE statements, dumps the

actual statements, and dumps the dbdict used to generate CREATE INDEX statement

 Issues a message for every hint used, when a sqlhint overrode the default mapping

 Issue debug information concerning table management such as, where will a new field be created,

is it necessary to create a new table for the new fields (such as a1, m2, etc.).

debugsqlmapping:3: In addition to the information provided above, this option also:

 Issues messages concerning field and key sizes, and sizes generated as a result of a sqlhint

debugsqlmapping:4: In addition to all the information provided above, this option also

 Prints progress messages on a field by field basis by printing a list of all fields and tables mapped

Sample output (excerpts):

Debug

level

Debug Message

1 RTE D **** Dbdict record passed into SchemaSQLMap: (replace is

set to:false)

1 RTE D ==

1 RTE D Field Name L Idx T RC Alias SQL Fieldname Type

DBMERGE Options

1 RTE D descriptor 0 1 9 F **NULL** **NULL** **NULL**

NULL **NULL** [0/ 3]

1 RTE D id 1 1 2 F m1 ID VARCHAR(250)

NULL **NULL** [1/ 0]

1 RTE D field01 1 2 2 F **NULL** **NULL** **NULL**

NULL **NULL** [1/ 0]

1 RTE D field02 1 3 1 F **NULL** **NULL** **NULL**

NULL **NULL** [0/ 0]

1 RTE D ==

1 RTE D DB Type Alias Table name

1 RTE D ==

1 RTE D Keytype Key field Keyindex

1 RTE D 12 id

1 RTE D **** Mapping file: TEST

2 RTE D Size of unique key is: 252 bytes

2 RTE D adding 0x179530F0 using key M1 to table dictionary

2 RTE D NewTablesInfo called for table TESTM1 and alias=M1

4 RTE D Processing field: descriptor Type: 9

4 RTE D Mapping field: descriptor Type: 9

4 RTE D Skipping field. It is already mapped and we're not

replacing mapped fields

4 RTE D Processing field: id Type: 2

4 RTE D Mapping field: id Type: 2

4 RTE D Skipping field. It is already mapped and we're not

replacing mapped fields

26

4 RTE D Processing field: field01 Type: 2

4 RTE D Mapping field: field01 Type: 2

2 RTE D FieldMap-4: got 0x179530F0 using key M1 to table

dictionary

4 RTE D Processing field: field02 Type: 1

4 RTE D Mapping field: field02 Type: 1

2 RTE D FieldMap-4: got 0x179530F0 using key M1 to table

dictionary

3 RTE D ** Size of the TESTM1 table is 322 bytes in 3 columns

4 RTE D Table: TESTM1 Alias: M1 New: Yes

4 RTE D FIELD01 VARCHAR(60)

4 RTE D FIELD02 FLOAT

2 RTE D GenerateDDL: CREATE for 0x179530F0 from table dictionary

2 RTE D GenerateDDL: dbdict passed into sqmkExportDDL

2 RTE D ==

2 RTE D Field Name L Idx T RC Alias SQL Fieldname Type

DBMERGE Options

2 RTE D descriptor 0 1 9 F **NULL** **NULL** **NULL**

NULL **NULL** [-1/-1]

2 RTE D id 1 1 2 F M1 ID VARCHAR(250)

NULL **NULL** [-1/-1]

2 RTE D field01 1 2 2 F M1 FIELD01 VARCHAR(60)

NULL **NULL** [-1/-1]

2 RTE D field02 1 3 1 F M1 FIELD02 FLOAT

NULL **NULL** [-1/-1]

2 RTE D===

2 RTE D DB Type Alias Table name

2 RTE D sqlserver M1 TESTM1

2 RTE D ===

2 RTE I SQLMap: Alter table statement:

2 CREATE TABLE /*P4[TEST; M1; sqlserver; ; Tot bytes: 0]*/ TESTM1

/* Tconstraints */ (

2 /*P4[id; 1; M1; 0]*/ "ID" VARCHAR(250) NULL,

2 /*P4[field01; 2; M1; 0]*/ "FIELD01" VARCHAR(60) NULL,

2 /*P4[field02; 3; M1; 0]*/ "FIELD02" FLOAT NULL

2)

2 COMMIT

2 CREATE UNIQUE INDEX TESTM14FA3E08B ON TESTM1 ("ID")

2 COMMIT

1 RTE D **** Finished mapping file: TEST

1 RTE D **** Dbdict record returned by SchemaSQLMap:

1 RTE D ==

 [...]

2 RTE D Size of unique key is: 8 bytes

2 RTE D Setting bReplace to TRUE, this table hasn't been mapped yet

2 RTE D NewTable called for file Test with MakeMain=TRUE and

alias=NULL

2 RTE D adding 0x0C521110 using key m1 to table dictionary

4 RTE D Processing field: descriptor Type: 9

4 RTE D Mapping field: descriptor Type: 9

4 RTE D Processing field: test1 Type: 1

4 RTE D Mapping field: test1 Type: 1

2 RTE D FieldMap-2: got 0x0C521110 using key m1 to table dictionary

4 RTE D Processing field: test2 Type: 2

4 RTE D Mapping field: test2 Type: 2

2 RTE D FieldMap-4: got 0x0C521110 using key m1 to table dictionary

4 RTE D Processing field: test3 Type: 8

4 RTE D Mapping field: test3 Type: 8

2 RTE D FieldMap-4: got 0x0C521110 using key m1 to table dictionary

4 RTE D Mapping field: test3 Type: 9

27

4 RTE D Mapping field: test3,test4 Type: 4

4 RTE D Mapping field: test3,test5 Type: 3

3 RTE D ** Size of the TESTM1 table is 88 bytes in 3 columns

1 RTE D **** Finished mapping file: Test

1 RTE D **** Dbdict record returned by SchemaSQLMap:

1 RTE D ==

 [...]

1 RTE D ===

1 RTE D DB Type Alias Table name

1 RTE D oracle10 m1 TESTM1

1 RTE D oracle10 a1 TESTA1

1 RTE D ===

1 RTE D Keytype Key field Keyindex

1 RTE D 12 test1 1

TESTM1 TESTM1FCEDF55D

1 RTE D ---

1 RTE D 0 test2

1 RTE D **** Dbdict record currently in system:

1 RTE D ===

 [...]

1 RTE D **** Mapping file: Test

2 RTE D Size of unique key is: 8 bytes

2 RTE D adding 0x0C5214D0 using key m1 to table dictionary

2 RTE D adding 0x08C73A40 using key a1 to table dictionary

2 RTE D NewTablesInfo called for table TESTM1 and alias=m1

 [...]

4 RTE D Processing field: test6 Type: 8

2 RTE D NewTablesInfo called for table TESTA1 and alias=a1

2 RTE D adding 0x08C73800 using key a1 to table dictionary

4 RTE D Mapping field: test6 Type: 8

3 RTE D FieldMap-1: field TEST6 - key a1 got 0x08C73A40 to table

dictionary

4 RTE D Skipping field. It is already mapped and we're not

replacing mapped fields

4 RTE D Processing field: test6 Type: 2

4 RTE D Mapping field: test6 Type: 2

2 RTE D FieldMap-4: got 0x08C73A40 using key a1 to table dictionary

3 RTE D FieldMap-some array table: releasing table TESTA1 alias a1,

restoring TESTM1-m1

3 RTE D ** Size of the TESTM1 table is 88 bytes in 3 columns

4 RTE D Table: TESTA1 Alias: a1 New: Yes

4 RTE D TEST6 VARCHAR2(20)

4 RTE D TEST61 VARCHAR2(60)

2 RTE D GenerateDDL: CREATE for 0x08C73A40 from table dictionary

2 RTE D GenerateDDL: ALTER for 0x0C5214D0 from table dictionary

2 RTE D GenerateDDL: dbdict passed into sqmkExportDDL

2 RTE D ===

Server debugging

debugca:n

This cache trace has two output modes: 1 = minimal, 2 = verbose. It is used to trace what is put into

and removed from cache.

debugca:1

Sample output:

D Cache add, key(dbdict), type(0)

D Cache add, key(syslanguagedbdict), type(1)

D Cache obs, key(ldaphostscldapconfig), type(1)

28

D obsolete(0) type(2) use count(0) interval reference count(1) key(*en-

macro-scmailmanyscmessage)

D ---------------------- Cache Dump End ----------------------

debugca:2

Sample output:

D Cache get, key(sctemporalinfo), type(1)

D Cache add, key(sctemporalinfo), type(1)

D Cache put, key(sctemporalinfo), type(1)

D Cache get, key(ldapssldbpathscldapconfig), type(1)

D Cache put, key(ldapssldbpathscldapconfig), type(1)

D Cache obs, key(ldapssldbpathscldapconfig), type(1)

D obsolete(0) type(4) use count(1) interval reference count(2)

key(erdcontract,contractwarranty)

D ---------------------- Cache Dump End ----------------------

Memdebug:nnn

The memdebug parameter can be used to trace memory allocation and report memory leaks.

 memdebug:0: Turns memory tracking off (default).

 memdebug:1: Track all memory allocated and freed with minimal information as to who

allocated/freed it. If, during thread termination a leak is detected, the immediate caller is dumped

out plus a dump of the leaked memory piece.

 memdebug:n [where n>1]: Track all memory allocated and freed with a stack trace attached to it

and document who allocated it. The value of memdebug determines how much memory will be

used for the stack trace; for example memdebug:400 uses 400 bytes. How many stack frames this

includes depends on the operating system. On systems running the Windows operating system,

that stack trace contains the program counter plus four parameters, each of which is 4 bytes in size.

So, 1 stack frame on Windows equals 20 bytes, and memdebug:400 reserves enough space for

20 stack frames. On systems running the AIX® operating system, there are three parameters per

stack frame; on systems running the Linux® operating system there are four, and on systems running

the Solaris® operating system there are six. Service Manager does not perform stack analysis at all

on systems running HP-UX®, so only memdebug:1 should be used on that operating system. For

example, when choosing memdebug:400, every allocation is tagged with an extra 400 bytes,

meaning when Service Manager allocates 2 bytes, it allocates 402+ bytes with the additional

overhead and the stack trace, immensely increasing memory consumption and negatively impacting

performance. Do not use this parameter value without being asked to do so explicitly by HP

Software Customer Support.

 memdebug:42: Does the same as memdebug:n and also turns on tracing of SQL buffers.

debugattachments

This parameter enters detailed attachment-related debugging messages into the sm.log file. Client

restart is required for this parameter to take effect. Sample output (excerpt):

D Created attachment collection 1287da0

D Clearing attachment collection 1287da0

D The current thread has no current record

D Clearing attachment collection 1287da0

D getPendingAttachments returning 0

D After running RAD, the current record is IM10001 and has pending

attachments collection 0 with 0 entries

D Record IM10001 of file probsummary currently has 0 attachments

D Calling buildXMLForAttachments with attachment collection 1f9f0620

D buildXMLForAttachments(): 0 attachments to be processed

D Destroying attachment collection 1f9f0620

RTE D +++++ AttachmentObject: 1fe566a8 11097

90dfe996117a87bb01117a87cb9e0001 application/octet-stream dbdict2.unl

29

D Created attachment object 1feff1f0

D Adding attachment 1feff1f0 with href 90dfe996117a87bb01117a87cb9e0001

to collection 1287da0

D Attachment collection size is now 1

D Incoming XML attachment element: name=dbdict2.unl action=add

href=90dfe996117a87bb01117a87cb9e0001 type= len=11097

D Execute request received together with 1 attachments

D getPendingAttachments returning 0

D Attachments collection successfully loaded for record IM10001 of file

probsummary

D Record IM10001 of file probsummary currently has 1 attachments

debugfileio

This parameter enables Service Manager to write detailed debugging messages on file input/output

to the Service Manager log file. File input/output is generated on unloads, loads, exports, and

imports. Sample output:

D agfile connect

D agfile attempting local connect (file:C:\WINDOWS\TEMP\SCAGW2, mode:

w/0x1/0x309)

D agfile connect successful

D agfile write

D agfile attempting to write 68 bytes

D agfile attempting local write

D agfile attempting to write 1 bytes

D agfile attempting local write

D agfile write

D agfile attempting to write 77 bytes

D agfile attempting local write

D agfile attempting to write 1 bytes

D agfile attempting local write

D agfile disconnect

D agfile sending disconnect to SOAP client (file:c:\temp\test.txt)

D agfile created SOAP document for request filePut

D agfile processed SOAP filePut response

debughttp

This debugging parameter logs detailed information about HTTP requests and responses and any

SOAP operations. Sample HTTP Log output (excerpt):

POST /sc62server/ui HTTP/1.1

accept: application/fastinfoset, text/html, image/gif, image/jpeg, *;

q=.2, */*; q=.2

authorization: Basic ZmFsY29uOkJDNzBFOURDNEE1MzIzQTk=

soapaction: "getList"

accept-encoding: gzip

content-encoding: gzip

pragma: requestnum="230"

cookie: JSESSIONID=A7617A3943CA9654322878B9D1BA2931; Path=/sc62server;

content-type: application/fastinfoset

content-length: 187

cache-control: no-cache

user-agent: Java/1.4.2_09

host: localhost:13080

connection: keep-alive

à 8ÏSOAP-ENV(http://schemas.xmlsoap.org/soap/envelope/ >Envelope>Header

> Body<getList<thread3 <formname‚contacts.search.g

< type‚listdetail <start‘32 <count¡

HTTP/1.1 200 OK

Keep-Alive: timeout=1200000, max=1000

Connection: Keep-Alive

Pragma: requestnum="230"

30

Content-Encoding: gzip

Content-Type: application/fastinfoset;charset=utf-8

Transfer-Encoding: chunked

Date: Fri, 23 Mar 2007 17:07:55 GMT

à 8ÏSOAP-ENV(http://schemas.xmlsoap.org/soap/envelope/Ïxsd-

http://www.w3.org/2001/XMLSchemaÏxsi(http://www.w3.org/2001/XMLSchema-

instance

?Envelope? Body<getListResponse|modelxcountA32x

 more@1x namecontactsxquery

Ctruexrecord@0xstart€ < keys|

contact.namexsctypeEstring ‚CM TEST M/F SUPPORT 1 |instancexrecordidCM

TEST M/F SUPPORT 1xuniquequerycontact.name="CM TEST M/F SUPPORT (888)

555-1212 |extension ’x257 |company ’PRGN |operator.id ‚M/F SUPPORT 1

|dept.name ’Sales |full.name ‚CM TEST M/F SUPPORT 1 FCM TEST M/F SUPPORT

2contact.name="CM TEST M/F SUPPORT 2" ‚CM TEST M/F SUPPORT 2‚(888) 555-

1212‚M/F SUPPORT 2 ‚CM TEST M/F SUPPORT 2 FCM TEST M/F SUPPORT

3contact.name="CM TEST M/F SUPPORT 3" E ‚ ‚CM TEST M/F SUPPORT 3 G

‚(888) 555-1212 H I ¡ J ‚M/F SUPPORT 3 K ¢ L ‚CM TEST M/F SUPPORT 3

FCM TEST PROCUREMENT (888) 555-1212 H I„ J ‚REPLACEMENT 3 K ¢ L ‚CM

TEST REPLACEMENT 3 FCM TEST SDUcontact.name="CM TEST SDU" E ‚ ‚CM

TEST SDU G ‚(888) 555-1212 H I ’ACME J ’ SDU K ¢ L ‚CM TEST SDU FCM ‚

‚CM TEST WAN SUPPORT 1 G ‚„ H„ J ‚eeditor K„ L ‚EDITOR, ED FEMPLOYEE,

JOEcontact.name="EMPLOYEE, JOE" E ‚ ‚

EMPLOYEE, JOE G ‚(317) 455-5476 H ’ 505 I ¡ J ‚ Joe Employee K ‚Marketing

L ‚ Joe Employee FEMPLOYEE,

descriptionª N

Btok@2 ‘OK « N

tcancel@3 ’ Cancel ‚

Done Searching N

Dtsave@4 ’Save N

Dtfind@8 ’Find ® N

Dtfill@9 ’Fill ¯ N

tmodifyC5130 ‚

Modify Columns ‚

Modify Columns N

texportC5140 ‚Export to Excel ‚Export to Excel N

texportC5150 ‚Export to Text File ‚Export to Text File N

tcustomC5170 ‚Custom Sort ‚Custom Sort ND32103 <title‚"Contact

Information: BROWN, NICHOLAS <messages

Sample sm.log output (excerpt):

D Parsing request document: <?xml version="1.0" encoding="utf-

8"?><execute><thread>1</thread><formname>system.status.list.g</formname

><type>detail</type><event>400</event><modelChanges><focus

cursorLine="1" cursorLineAbs="1"

readonly="1">var/ss.status.stats</focus></modelChanges></execute>

D Done parsing request document

D Parsing request document: <?xml version="1.0" encoding="utf-

8"?><execute><thread>1</thread><formname>system.status.list.g</formname

><type>detail</type><event>400</event><modelChanges><focus

cursorLine="1" cursorLineAbs="1"

readonly="1">var/ss.status.stats</focus></modelChanges></execute>

D Done parsing request document

D Parsing request document: <?xml version="1.0" encoding="utf-

8"?><execute><thread>1</thread><formname>system.status.list.g</formname

><type>detail</type><event>3</event><modelChanges><focus cursorLine="1"

cursorLineAbs="1"

readonly="1">var/ss.status.stats</focus></modelChanges></execute>

D Done parsing request document

D Parsing request document: <?xml version="1.0" encoding="utf-

8"?><getMessages/>

D Done parsing request document

31

D Parsing request document: <?xml version="1.0" encoding="utf-

8"?><getMessages/>

D Done parsing request document

debugjni

This parameter provides detailed debugging in the Java® Native Interface® implementation. The Java

Native Interface is used to interface the native Service Manager C/C++ code with the Java servlets in

Service Manager 6.2 and higher. Sample output:

RTE D _____ 0122d2c0 - JNIMemoryAllocator::allocate mem at 01212370, size

= 1977

RTE D _____ 0122d2c0 - JNIMemoryAllocator::findByteBufferObject - at

01212370

RTE D JavaProxy instantiated for class name

com.hp.ov.sm.common.core.XMLAction

RTE D JavaProxy instantiated for class name

com.hp.ov.sm.common.core.AttachmentCollection

RTE D JavaProxy instantiated for class name java.util.LinkedList$ListItr

RTE D _____ JNIMemoryAllocator::getDirectByteBufferAddress - returning

address 01212370

RTE D _____ 0122d2c0 - JNIMemoryAllocator::allocate mem at 0e28b088, size

= 32000

RTE D JavaProxy instantiated for class name

com.hp.ov.sm.common.core.AttachmentCollection

RTE D _____ 0122d2c0 - JNIMemoryAllocator::findByteBufferObject - at

0e28b088

RTE D _____ 0122d2c0 - JNIMemoryAllocator::release - releasing mem at

0e28b088

RTE D _____ 0122d2c0 - JNIMemoryAllocator::releaseAll - releasing mem at

01212370

RTE D _____ 0122d2c0 - JNIMemoryAllocator::allocate mem at 0e2602a8, size

= 397

RTE D _____ 0122d2c0 - JNIMemoryAllocator::findByteBufferObject - at

0e2602a8

RTE D JavaProxy instantiated for class name

com.hp.ov.sm.common.core.XMLAction

RTE D JavaProxy instantiated for class name

com.hp.ov.sm.common.core.AttachmentCollection

RTE D JavaProxy instantiated for class name java.util.LinkedList$ListItr

RTE D _____ JNIMemoryAllocator::getDirectByteBufferAddress - returning

address 0e2602a8

RTE D <?xml version="1.0" encoding="utf-8"?><SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"><SOAP-

ENV:Header/><SOAP-ENV:Body><start/></SOAP-ENV:Body></SOAP-ENV:Envelope>

RTE D _____ 0122d2c0 - JNIMemoryAllocator::allocate mem at 0e296138, size

= 32000

RTE D JavaProxy instantiated for class name

com.hp.ov.sm.common.core.AttachmentCollection

RTE D _____ 0122d2c0 - JNIMemoryAllocator::findByteBufferObject - at

0e296138

RTE D _____ 0122d2c0 - JNIMemoryAllocator::release - releasing mem at

0e296138

RTE D _____ 0122d2c0 - JNIMemoryAllocator::releaseAll - releasing mem at

0e2602a8

logdebuglevel:n

This parameter writes all messages from the servlet into the sm.log file. This information should be

used to determine if the nodes communicate successfully in a vertical or horizontal scaling

implementation.

32

The parameter accepts the following values:

 0 = DEBUG: Displays all messages including debug information

 1 = INFO (default): Displays informational messages, warnings, errors and fatal errors

 2 = WARNINGS: Displays warnings, errors and fatal errors

 3 = ERRORS: Displays all errors

 4 = FATAL ERRORS: Displays fatal errors only

Sample output:

16.95.106.191:1993: sending msg #8

sending msg to null (src=16.95.106.191:1993), headers are {NAKACK=[MSG,

seqno=8], UDP=[channel_name=geist8440:62670], VIEW_SYNC=[VIEW_SYNC],

view= [16.95.106.191:1987|2] [16.95.106.191:1987, 16.95.106.191:1990,

16.95.106.191:1993]}

received (mcast) 191 bytes from 16.95.106.191:1994

loadClass(org.jgroups.protocols.VIEW_SYNC$ViewSyncHeader, false)

loadClass(org.jgroups.protocols.VIEW_SYNC$ViewSyncHeader, false)

message is [dst: 228.3.11.191:12346, src: 16.95.106.191:1993 (3 headers),

size = 0 bytes], headers are {NAKACK=[MSG, seqno=8],

VIEW_SYNC=[VIEW_SYNC], view= [16.95.106.191:1987|2] [16.95.106.191:1987,

16.95.106.191:1990, 16.95.106.191:1993],

UDP=[channel_name=geist8440:62670]}

16.95.106.191:1993: received 16.95.106.191:1993#8

.191:1993 (3 headers), size = 0 bytes], headers are {NAKACK=[MSG,

seqno=8], VIEW_SYNC=[VIEW_SYNC], view= [16.95.106.191:1987|2]

[16.95.106.191:1987, 16.95.106.191:1990, 16.95.106.191:1993],

UDP=[channel_name=geist8440:62670]}

received msg from 16.95.106.191:1993 (counts as ack)

16.95.106.191:1990: received 16.95.106.191:1993#8

received (mcast) 191 bytes from 16.95.106.191:1994

debuglk:n

This debug parameter writes information on hold times for semaphore locks into the sm.log file. It is

called with debuglk:n for tracing all locks that were held longer than n milliseconds. Sample output:

RTE W WARNING: lock [8]Cache manager held for 16 milliseconds by

routine \sc\sc6.2.0.0\src\ca.cpp line 2026

debugprocesses

This parameter writes detailed process creation and termination debugging messages into the

sm.log file. This includes which procedures were called, return codes, records retrieved, encryption

messages, and so forth, as shown below. Sample output:

RTE D After encryption using SHA512:

RTE D 0000: 24DB92E5 5E5BD443 7C0DCD6F 73BF4FF5 [$...^[.C|..os¿O.]

RTE D 0010: 34A1F230 6B0CAF09 8FF13B14 0D8E202E [4¡.0k.¯ ..;... .]

RTE D 0020: B10C5A07 F84230CB 21256410 9BD6AD99 [±.Z..B0.!%d....]

RTE D 0030: 566E0C33 26638EE1 70C7B637 FB3F31E1 [Vn.3&c..p.¶7.?1.]

RTE D Final encryption:

=SH524DB92E55E5BD4437C0DCD6F73BF4FF534A1F2306B0CAF098FF13B140D8E202EB10C5

A07F84230CB212564109BD6AD99566E0C3326638EE170C7B637FB3F31E1512=

RTE D evjscall: Created new js context 122b148

RTE D tzstart: Opened the "info" file successfully

RTE D tzstart: Retrieved the company record successfully

RTE D _getTZRecord: Retrieved timezone record called 'US/Mountain'

RTE D evjscall: Using existing js context 122b148

RTE D Request for work buffer (86564 bytes) exceeded work buffer size

RTE D evjscall: Using existing js context 122b148

33

debugnode

This parameter does not produce any additional output. When the parameter is added to a servlet

container / node in a scaled environment, it prevents the Load Balancer from sending or redirecting

requests to that node. It allows that node to be “part of the cluster,” but will only receive direct

connections. This will help with debugging only a subset of users that work in the load balanced

environment, by putting debug parameters only onto the node that is receiving a controlled set of

direct connections.

debugrs:n

This parameter traces how long resource locks are being held. It is called as debugrs:n where n is

the number of milliseconds a resource lock can be held until a message is written to the sm.log file.

Sample output:

RTE D Held resource (loginLock-falcon) for 16 milliseconds

RTE D Held resource (scirexpert) for 16 milliseconds

RTE D Held resource (scirexpert) for 16 milliseconds

RTE D Held resource (ir.probsummary) for 141 milliseconds

RTE D Held resource (techterms) for 16 milliseconds

RTE D Held resource (scirexpert) for 16 milliseconds

RTE D Held resource (scirexpert) for 15 milliseconds

RTE D Held resource (ir.probsummary) for 94 milliseconds

debugscauto

This parameter provides detailed debugging messages for SCAuto connections in the sm.log file.

debugstartup

This parameter writes detailed startup debugging messages into the sm.log file, such as information

about getting system information, creating and attaching shared memory, and so forth. Sample

output:

RTE D sysinfo_set: entered with type 3

RTE D GetMyHostByName: using host name hostname

RTE D GetMyHostByName: returning ip address 127.0.0.1

RTE D inhook: entered

RTE D insyslock: entered

RTE D insyslock: lock string is hostname.62670

RTE D systart entered

RTE D systart: calling inhook

RTE D sysinfo_set: entered with type 3

RTE D GetMyHostByName: using host name hostname

RTE D GetMyHostByName: returning ip address 127.0.0.1

RTE D inhook: entered

RTE D insyslock: entered

RTE D insyslock: lock string is hostname.62670

RTE D sm_hook: About to call shmget to attach to shared memory

RTE D sm_hook: Successfully attach to shared memory

RTE D ---------- shmat call MapViewOfFileEx() with shmaddr = 3020000

RTE D systart: inhook returned 0

RTE D systart returning 0

RTE D inunhook: entered

debugshutdown

This parameter gives detailed shutdown debugging messages. Sample output:

RTE D inshut() - Calling usshut..

RTE I User has requested a system shutdown

RTE D User block found for process 5516, thread -1

RTE D pid 5516 tid -1 is prevented, stop scheduled

RTE D User block found for process 4644, thread -1

RTE D kill function entered with signal 15 for pid 4644

34

RTE D stop succeeded for pid 4644 tid -1

RTE D User block found for process 4392, thread -1

RTE D OpenProcess for pid 4392 failed. Last error = 87

RTE D User block found for process 4392, but process no longer exists

RTE D inunhook: entered

RTE D User block found for process 5516, thread -1

RTE D pid 5516 tid -1 is prevented, stop scheduled

RTE D User block found for process 4644, thread -1

RTE D kill function entered with signal 9 for pid 4644

RTE D Calling TerminateProcess for process 4644

RTE D stop succeeded for pid 4644 tid -1

RTE I Waiting for 5 users to terminate

JRTE I TermnateStatus is set to true, cleaning up all servlet threads.

Stopping Coyote HTTP/1.1 on http-13080

RTE I Process termination in progress

RTE D inunhook: entered

RTE D User block found for process 4644, thread -1

RTE D OpenProcess for pid 4644 failed. Last error = 87

RTE D User block found for process 4644, but process no longer exists

RTE D inshut returned: 0

RTE D Starting interm()...

RTE D Starting inRemoveScdbSystem()...

RTE D Finished inRemoveScdbSystem()...

RTE D Calling error_exit..

msglog

This parameter places all messages that were sent to the client into the sm.log as well.

Note: The msglog parameter works only with the RPCReadOnly listener.

Tuning Service Manager

Service Manager is an enterprise-level application that is used by very busy helpdesks where

response time is very important. This section provides recommendation on how to best tune Service

Manager.

Tuning Service Manager Server

Service Manager is designed to run 24 x 7 x 365 supporting a few hundred to thousands of

concurrent users. There are two ways in which to scale a system: vertical scaling, a huge system

capable of supporting all users, or horizontal scaling, using several smaller systems to each support a

subset of users. There are advantages and disadvantages to each of the methods.

In order for a group of Service Manager Server processes to work together, they need to

communicate information on:

1. Resource Locking

2. License management

3. Cache invalidation

4. Session status

5. Load balancing

6. IR processing

Terminology:

 Group: a group of Service Manager server processes running on one or more hosts and

connecting to one database to serve Service Manager client sessions or Web Services sessions.

 Node: a node is a Service Manager server process within a group.

35

 Service Manager servlet process: Service Manager Server process that serves Service Manager

clients (Windows or Web) as well as Web Services requests.

 Service Manager background process: Background processes that wakes up periodically to

execute a particular RAD application or RTE routine such as sm -que:ir.

 Service Manager transient process: Service Manager Server process that executes a RAD

application or RTE routine only once, not periodically such as sm -reportlbstatus.

Vertical Scaling

With vertical scaling, multiple Service Manager Server processes run on a single machine. They

support a number of concurrent users while one Service Manager Load Balancer process runs to

redirect a user to a particular Service Manager Server process. Clients first make a connection

request to the Service Manager Load Balancer who then forwards the request to the next available

Service Manager Server process to establish a user session.

Communications regarding load balancing happen through JGroups. JGroups uses multicasting to

create and maintain consistent information among all the nodes within the group.

To reduce communication overhead, the Session status, Resource Locking, License management and

cache invalidation information are communicated through shared memory, since all Service Manager

processes are located on the same host.

Horizontal Scaling

The following diagram illustrates a typical horizontal scaling environment. The groupname

parameter in the sm.ini indicates that it is a horizontal scaling configuration. Without groupname,

Service Manager Server will start a vertical scaling environment and will not communicate with other

Service Manager services on other hosts.

In the horizontal scaling setup, the host myserver1 runs the Service Manager Load Balancer, several

Service Manager Server processes, the Service Manager background processes and sm -que:ir.

The sm -que:ir process is required since asynchronous IR is forced in the horizontal environment.

The hosts myserver2 and myserver3 each contain several Service Manager Server processes and the

sm -sync process. When a client connection is made to the Service Manager Load Balancer on

myserver1, the Load Balancer sends a redirect message containing an available server back to the

client. The client then makes another request to the server specified in the redirect message.

Communications between all processes on the same host go through the host’s shared memory. The

communications between processes on different hosts go through JGroups.

36

Mechanisms behind the scaling environment

 Shared Memory

Shared memory is created as soon as the first Service Manager Server process on the host starts.

Each host in the group has its own shared memory.

In a vertical scaling environment, shared memory contains information on resource locking, license

information, cache, session status, and IR processing that needs to be shared between Service

Manager Server processes on the same host. In a horizontal scaling environment, resource locking,

license information, and session information are stored in the process memory and are

communicated through JGroups. Only data cache and IR cache are stored in the shared memory in

this environment.

 Load Balancer

The Service Manager Load Balancer is a special instance of the Service Manager server whose sole

purpose is to provide a single entry point for all client connections to a farm of Service Manager

servers. The Service Manager Load Balancer running in a vertical or horizontal scaling group

automatically detects all Service Manager Server processes that are currently in the group. It is

able to categorize all detected Service Manager Server processes as servlet process, background

process, or transient process. It also maintains information of the maximun and current capacity of

each servlet process.

– Implementation

The Service Manager Load Balancer is implemented as a servlet filter. This servlet filter upon

receiving a HTTP/1.1 client request will return a HTTP 307 redirect with the HTTP Location

header set to a URL of one of Service Manager Application servers back to the client that made

the request. The client in turn uses the URL set in the Location header and connected directly to

the Application server, the handling of redirect is usually transparent. The following diagram

illustrates the process of how the Service Manager Load Balancer handles a client request.

37

– Algorithm

As described in the previous section, SM uses JGroups multicast technology to communicate

among a group of servers. Load Balancer maintains a list of available server nodes based on the

group view (list of nodes identified by JGroups). The view changes when a node joins or leaves

the group. The load balancer then either adds or removes the respective node from its list.

When the load balancer sees a new node it queries the node to find out its capacity.

Load balancer uses a simple round-robin algorithm when choosing a server to handle a user

session request. After forwarding a request the load balancer decrements the available capacity

of the node by one. When a node reaches its capacity, load balancer removes it from its pool of

nodes with capacity. Nodes in the group notify the load balancer of their current availability

when a session ends. The load balancer then increments the available capacity of that node if it

is in the pool of nodes with some capacity otherwise the node gets added to the pool.

When total available capacity within the group drops below 25, load balancer requests each

node in the group to reply with the current status and the list of available nodes is updated. The

position of each node on the list may change whenever the list is updated. Since the list is

changing quite often, the node that the load balancer directs the next Service Manager Client

session to may seem unpredictable.

– Current limitations

– There can only be one Service Manager Load Balancer in a group. This can be

considered as a single point of failure, affecting only new connections. Once the

load balancer is restarted the system can continue functioning. Later in this

document we will show how to overcome this single point of failure with a high

availability configuration.

– The HTTP 307 redirect is not fully compliant with the spec which can affect Web

Services integrations through SM Load Balancer (e.g. MS BizTalk). The workaround

is to connect directly to one of the Service Manager Application servers.

– Since the server nodes notify SM Load Balancer of its capacity only when a session ends, it
will not be aware of any connections made directly to a server.

– Web Services through SM Load Balancer is not possible when SSL mode is enabled on the
server.

SM Client

SM LB

SM Server

 1. Client request for connection to Service
Manager Load Balancer (SM LB)

2. SM LB finds next
available SM Server

 3. SM LB responds HTTP 307 redirect with one assigned SM
Server host and port information.

 4. Client request for connection to assigned SM Server

5. SM Server
accepts the
connection and
establish a client
session

 6. SM Server response connection responds HTTP 200 OK

 7. Client continues with further user request …

38

– Web Service through SM Load Balancer is not possible for Web Services clients that can’t
handle redirect.

Session status

In a vertical scaling environment, the user session information is stored in shared memory.

Information about all currently running processes and users can be directly retrieved from shared

memory. In a horizontal scaling environment, the user session information is kept in memory on each

of the Service Manager Server processes. Using JGroups communication, the session information on

each of the hosts is gathered and made available to the system status application.

Resource locking

Locking provides a tool for protecting data integrity. In Service Manager, locks are logical locks,

meaning they do not actually lock physical database records, even though the lock name such as

“probsummary:IM1001” hint to a physical record lock. A lock prevents concurrent Service Manager

applications or RAD threads to manipulate the same record which is protected by a lock.

The lock information containing which thread is currently holding the lock is stored in shared memory

so that all Service Manager Server processes on the same host can get consistent information within

the vertical scaling configuration. In a horizontally scaled environment, this information is stored in

the Service Manager Server process memory and needs to be synchronized across all SM Server

processes running on all Service Manager hosts at any given point in time, which imposes an

overhead. Therefore, it is best practice to only use locking when it is necessary and to hold the lock

for as little time as possible.

License management

The Service Manager License is locked to an IP address. License information is stored in shared

memory in a vertically scaled system and stored in the Service Manager Server process memory in a

horizontally scaled system.

In a horizontally scaled environment, the host whose IP address the Service Manager License is bound

to is referred to as the primary host. Others in a group are referred to as secondary hosts. The

grouplicenseip:<primary host IP> parameter should be included in the sm.ini file on all

secondary hosts to validate the license with the primary host and the LicFile.txt file, which is retrieved

from HP Webware, should be copied on all of the secondary hosts.

In order to establish the horizontal scaling group, the first node of the group needs to be started on

the primary host. Once the group is established on the primary host, the Service Manager Server

processes on the secondary hosts can be started to join the group. Once the whole group is

established, the primary host can be brought down for maintenance and rejoin the rest of the running

group when it is restarted. As long as a member of the SM Server process is running in the group,

processes on a secondary host with the same grouplicenseip:<primary host IP> can join

the group and it is not required for the primary host to be running. Another secondary host can be

started even if the primary host is down for any reason. However, when the group is down, i.e. there

is no node running in the group, the group has to be re-established from the primary host first.

Cache invalidation

SM server creates one shared memory per host to store cache data for faster access to frequently

used records. When a record is updated, cache data in the shared memory needs to be refreshed.

In the case of vertical scaling, since all nodes reside on one host with only one shared memory, all

SM Server processes will be reading the up to date data as soon as the cached record is refreshed by

any SM Server process. In a horizontal scaling environment, each host in a group has its own shared

memory and any one record could be cached on more than one host. When this cached record is

updated on any host in the group, the SM Server process has to notify all other hosts in the group to

invalidate that cached record and refresh the record from the database.

39

IR processing in scaled environments

Service Manager IR is a free text search engine with its own index to do fast retrieval. IR index

information is stored in shared memory. Whenever a record containing an IR field is updated, IR

index information in shared memory also gets updated. This counts toward user response time when

updating a record. We can have better response time by using Asynchronous IR, with the tradeoff

that the search might not reflect the new changes for a short period of time. Asynchronous IR inserts a

record in the irqueue table whenever a record with an IR field has been modified. Then the sm -

que:ir background process processes the records in the irqueue table to update the IR index with

the modified information.

In a horizontally scaled environment, updating the IR index means updating all shared memory on all

hosts in the group. This causes a performance impact when using synchronous IR. Therefore,

asynchronous IR is forced in horizontal environment. For IR to run successfully, start the sm –que:ir

background process once on one host within the group.

Web Services in scaled environments

In a horizontal scaling or vertical scaling environment, it is recommended that the incoming Web

Services requests to the Service Manager server do not connect through the SM Load Balancer.

Instead, dedicate one or more SM Server processes to serve Web Services requests by adding the

debugnode parameter to the process you wish to be dedicated to serve Web Services requests. The

debugnode parameter tells the SM Load Balancer in the group not to forward any request to this

node. For example: in vertical scaling, you can add “-debugnode” to one SM Server process in the

sm.cfg file as follows. Then, direct all Web Services requests to port 13083 for http connection and

port 13445 for https connections.

---sm.cfg---

sm -loadBalancer -httpPort:13080

sm -httpPort:13081 -httpsPort:13443

sm -httpPort:13082 -httpsPort:13444

sm -httpPort:13083 -httpsPort:13445 -debugnode

sm system.start

Application tailoring considerations in the clustering environment

use batch size in sequential number and counter file

The counter and number tables are generally used for filling a unique number into a key field when

creating a new record. For instance, the incident management number record holds the last number

for Incident Management tickets. These numbers have the prefix “IM” and the next Incident ticket

number can use the currently stored number, incrementing it by 1. During incident ticket creation, the

system has to read the number record and update it with the incremented last number which poses a

bottleneck when trying to create a large volume of incident tickets.

If in your environment it is only required to have a unique number instead of a unique and continuous

number, you can – in both vertical and horizontal scaling environments - relieve this bottleneck by

setting the batch size field in the associated number or counter records. This allows the SM Server

process to pre-fetch a specified amount of numbers or counters for later use. These pre-fetched

numbers or counters are stored in shared memory. The SM Server processes on the same host can

then assign these pre-fetched numbers to the newly created record until they are all used and then

fetch the next set of numbers or counters.

Using the incident management number record as an example, if the batch size field is set to 25, and

the last number is stored as 1000, the SM Server process on a host in the group will pre-fetch 25

numbers, and set last number field to be 1025. The SM Server process on another host in the group

will then pre-fetch another 25 numbers and set the last number field to be 1050. This way, when

users logged into the first SM host create Incident Management tickets, they use numbers IM1001

through IM1025. When the numbers in the shared memory on a host have been used up, the SM

Server process then fetches another batch of numbers.

40

This improves system performance dramatically, but when the system shuts down, numbers that have

been fetched but not used will not be restored back to the number or counter table. Due to this, when

the batch size is set the number value in the associated field will not be continuous. In a horizontally

scaled environment, this also means that lower ticket numbers do not imply that the tickets are created

earlier than the higher ticket numbers. In the example above, IM1026 ticket might be created before

IM1020.

The batch size should be set close to the value that is going to be used in a day, i.e. if batch size is

set to 1000 and only 5 records are created for the table before the systems get restarted, 995

numbers are going to be lost. Because there is an upper limit to each number, which is a long data

type, you do not want to waste numbers.

background processes (Anubis)

Anubis is a RAD application that queries for currently running processes and restarts the background

processes that are not in the running processes list, but are in the system startup record. Typically you

run this application via the anubis background scheduler periodically to automatically start

background processes. However, in the horizontal or vertical scaling mode, this application requests

every SM process in the group to provide its currently running sessions and threads, which creates a

large communication overhead if anubis is running too often. It is a good practice to set the anubis

background scheduler to run less often than every 30 min.

global lists

A global list that contains a huge number of items will have performance impact for the following

reasons. Since global lists are often used in drop downs, big global lists mean it takes a long time for

the SM Server process to build the form, a long time for the SM Clients to process the form, and

SOAP messages between the SM server and client are huge.

Service Manager has a mechanism to automatically rebuild global lists by setting the global list to

expire whenever a record is modified that contains a field which is part of the global list. When the

lister background process wakes up every minute to rebuild expired global lists, it locks up the global

list to avoid data corruption while rebuilding. In a horizontal or vertical scaling environment, if

rebuilding the global list takes a long time, no other threads or processes can update the global list

for that time. This means if a user modifies a record that affects a global list, the user thread has to

wait for that global list to be unlocked to set the global list as expired. This causes a long response

time when modifying those records.

Review the global lists on your system. If a global list gets too big, remove that global list and replace

the drop down by a fill field on the form. Fill goes through a QBE list while a drop down list uses a

global list.

High availability setup for horizontal scaling

The following diagram shows a high availability setup.

41

In this setup, the Service Manger Windows client connects through a LAN and directly talks to the

Service Manager Load Balancer. Service Manager Web Client users use browsers to connect to a

Hardware Load Balancer, which then redirects the user to one of the application servers that host the

Service Manager Web Tier. The Web Tier then connects to one of Service Manager Server

processes through the Service Manager Load Balancer. The following section takes a closer look at

the Service Manger Server configuration on each of the systems in the above setup.

Host A & Host A1

Host A and Host A1 are part of a High Availability cluster. Host A and A1 will have an identical

configuration, with normally only Host A being active. The load balancer and all Service Manager

background processes including the sm -que:ir process are setup on this system. If Host A dies for

any reason, Host A1 becomes active and in the process of becoming active starts the load balancer

and all background processes. This setup eliminates the load balancer being the single point of

failure. Also, having all of the background process in the HA systems solves the problem of losing the

background processes when the host running the background process dies. The individual

background processes are guaranteed to get restarted on failure by the Service Manager anubis

background process.

Switch

One of the requirements for horizontal scaling is that all servers are connected to the same multicast-

enabled switch for a minimum number of hops. The minimum number of hops is of utmost importance

for the maintenance and performance of the group.

Server A, B, C, D

Servers A through D will all run the Service Manager servers. These servers need not be of the same

capacity. At this time, we only support servers running the same Operating System. Each of the

servers needs to run the sync background process to maintain the integrity of shared memory.

42

Scaling Environment Administration/Troubleshooting

It is not trivial to setup a horizontally scaled system. You need to understand the impact of all the

parameters needed to successfully run in this mode. Here are some common issues in setting up a

horizontal scaling environment and how to troubleshoot them.

Servers from different hosts do not communicate with each other

Run the command below from the <sminstall>\RUN folder

jre\bin\java -classpath lib\jgroups-all-2.5.0.jar;\lib\commons-logging-

1.1.jar;lib\log4j-1.2.14.jar org.jgroups.tests.Probe -timeout 30 -query

jmx

This will help find all the cluster members and their configurations (groupaddress, groupport).

Server not starting

Run the command below from one of the host from the <sminstall>\RUN folder

jre\bin\java -classpath lib\jgroups-all-2.5.0.jar;\lib\commons-logging-

1.1.jar;lib\log4j-1.2.14.jar org.jgroups.tests.McastReceiverTest -

mcast_addr 224.10.10.10 -port 5555

The above command will start and wait for JGroups messages. Now from another host run the

command below from the <sminstall>\RUN folder

jre\bin\java -classpath lib\jgroups-all-2.5.0.jar;\lib\commons-logging-

1.1.jar;lib\log4j-1.2.14.jar org.jgroups.tests.McastSenderTest -

mcast_addr 224.10.10.10 -port 5555

After running the command, type in a message to be sent and press enter. If the message is received

on the first host running the recv test, you have a valid configuration.

If the message was not received and you are running on windows, try the following command before

repeating the above steps again.

route add -net 224.0.0.0 netmask 224.0.0.0 dev lo

Having multiple Network Interface Cards (NICs)

If you have multiple network cards on the server, follow the required steps outlined below:

1. Specify the groupbindaddress parameter in the sm.ini. This will be the IP address of the NIC on

which all of the cluster communication will occur. This value will be different on each host with

multiple NICs. This helps to improve performance and the cluster communication will occur only

on the bound address. If you see this error message: Multiple ipaddress found, Failed to lock the

database with the clustername and subnet address. Provide an ipaddress to use in

groupbindaddress parameter, or Provide subnetaddress to use in groupsubnetaddress parameter,

you will need to specify the groupbindaddress.

2. Generally, you will only need the groupbindaddress parameter if the host has multiple NICs and

the groupsubnetaddress parameter is not needed. However, if you have put the

groupbindaddress parameter into the sm.ini and still see the error message Failed opening a

temporary socket, to retrieve subnet mask or Error occurred while retrievieng subnet mask, you will

need to specify the groupsubnetaddress parameter in the sm.ini file. This will help lock the

database of this cluster. The value for this parameter needs to be the same on all the hosts.

SM Administration Commands

The commands below should be executed from the <sminstall>\RUN folder.

To report the current state of the SM Load Balancer:

sm -reportlbstatus

To report locks owned by each process in the group and user sessions which are waiting for locks:

43

sm -reportlocks

To report the state of the group (n) number of times repeating every (m) seconds:

(Note that if (n) is set to 0, it reports the state of the group every (m) seconds until the Service

Manager server is shutdown.)

sm -reportgroup:m,n
sm -reportgroup:m,0

How Do I quiesce servlets?

To quiesce the entire group, run

sm -quiesce:2 -group

To quiesce all servlets on a host, run

sm -quiesce:2 -host:<hostname>

If you have specified the groupbindaddress parameter in the sm.ini, you should use the bind

address for the hostname in the above command.

How do I shutdown servlets?

To shutdown the entire group, run:

sm -shutdown -group

To shutdown all servers on a host, run:

sm -shutdown –host:<hostname or IP>

Note: The host name and the IP value should be the one reported through reportlbstaus.

To shutdown one SM Server process in a group, run:

sm –shutdown –host:<hostname or IP> -pid:<process id>

Additional logging for debug in Horizontal environment:

To report all communication from one SM Server process to all others in a group:

sm -httpPort:13080 -

log4jDebug:com.hp.ov.sm.common.resource.TaskDispatcher

Report all SM Load Balancer info:

sm -loadbalancer -httpPort:13080 -

log4jDebug:com.hp.ov.sm.common.cluster.LoadBalancer

Reports all lock requests and the amount of time each lock is held by a SM Server process or SM user

session. This parameter will log large amounts of information, so make sure only a single SM Server

process has this parameter enabled. You can place this parameter in the SM Server command line

such as:

sm -httpPort:13080 -httpsPort:13443 -debugrs:1

Web Services - Service Manager as Web Services provider

For each http post request, Service Manager Server creates or finds an existing http session to serve

the request. A session in Service Manager is identified by userID and JSESSIONID, which are stored

in the http Authentication header and Cookie header respectively.

For the GUI clients (Service Manager web and windows client), a session is created when the user

logs in and removed after the user logs out or the login fails.

For Web Services clients, a session is created when the Web Services SOAP request is received. It is

removed after the corresponding SOAP response has been sent or login fails.

44

Here are some tips to help Service Manager performance in serving Web Services:

1. Do not use same user name for all Web Services sessions

Service Manager must go through the login process for each session creation. When a number of

requests try to log in with the same user name at the same time, the operator record becomes the

bottleneck. This is due to the fact that Service Manager records the login history and other

information in the operator record for each login process. If all requests use the same operator,

modifying this operator record has to be synchronized.

2. For batch Web Services requests, use session persistence

In Service Manager, a session is identified by user id and JSESSIONID in the http cookie.

Traditionally, Service Manager creates one session to serve each Web Services request and

destroys the session when the associated response has been sent. Because session creation is an

expansive operation, it is possible to have Service Manager persist sessions for Web Services

requests to avoid frequent session creation and destroy overhead.

One use case of Web Services session persistence is when a large amount of Incident

Management tickets in a remote system need to be integrated into Service Manager. Instead of

doing one CreateIncidentRequest/CreateIncidentResponse per session, Service Manager can keep

the session for a predefined amount of time to serve multiple sequential Web Services requests.

The Service Manager parameter to specify the amount of time to keep a Web Services session

alive is webservices_sessiontimeout. Follow the steps below to implement this parameter.

3. Cache queries against the extaccess table

Add the following parameter to the sm.ini: dbcachequery:extaccess. This parameter caches query

results and thus improves query performance.

How to setup session persistence

1. In theService Manager server sm.ini, specify webservices_sessiontimeout in seconds for the amount

of idle time before the Service Manager server cleans up the Web Services session. This value

should be set according to system resources available to the web service to avoid exhausting

Service Manager available sessions. For example, if 50 sessions are available for the web service

port, and 10 requests come in per minute, set the sessiontimeout parameter to no more than 5

minutes.

2. On the Web Services client side, specify the following http header in the Web Services requests:

 Connection: Keep-Alive

3. In the response header from the Service Manager server, capture the cookie information.

HTTP/1.1 200

Set-Cookie: JSESSIONID=3ECB02AF2AB26987EAF75FC07DCDFF6A; Path=/SM

Keep-Alive: timeout=1200000, max=1000

Connection: Keep-Alive

Content-Type: text/xml;charset=utf-8

Content-Length: 1133

Date: Fri, 07 Nov 2008 19:34:35 GMT

4. In the subsequent requests, add the cookie information that is captured in step 3 to the request http

header and use the same user information as in step 2.

 cookie: JSESSIONID=3ECB02AF2AB26987EAF75FC07DCDFF6A; Path=/SM

In the sm.log, you should see 4356(2396) 11/07/2008 11:54:18 RTE D User
falcon is already logged in for this process - skipping login

processing. This means the Service Manager Server has found the session and the user

authentication information identified by the cookie and is using it to serve the request.

5. If the Web Services client realizes the request is going to be the last request of the session and

wishes to close the session to avoid session lingering, send a Web Services request with the

following header:

45

 Connection: closed

SM Server will clean up the session after serving this request. You should see “User falcon

has logged out and freed a Named license (0 out of a maximum 25)”

messages in the sm.log.

IR Tuning for Performance

IR index is a very complex data structure. To improve performance on IR regen, index updates, or IR

query the following steps can be taken:

 Purge/Archive

Archive old records in tables that have an IR key and purge them afterwards. Archiving can mean

to move them into a separate SM system where they are still accessible. Complexity is reduced by

indexing fewer records.

 Add stop words

Adding new stop words reduces the number of terms that need to be indexed. First run vrir against

the file in question to determine which terms are used most often. Very often year and month

numbers are found at the top of the list (e.g. 01, 02, 03, 2007, 2008). It is recommended to put

all terms into the stop words file that occur in more than 10,000 documents.

 Review the key definition

Review the IR key defined for each file. The more fields are indexed the more terms will be

indexed, adding to the complexity. The original purpose of IR was to be able to quickly find a

solution for a certain issue. To find the solution for an issue, only the description should be

searched, not the solution or updates, since the description should match between two similar

issues.

 Allow IR to use more shared memory

More space in shared memory dedicated to IR can improve IR performance. The ir_max_shared

parameter is used for allocating dedicated space in shared memory for IR and the

shared_memory parameter specifies the size all SM Server processes should allocate for total

shared memory. Ideally, the size of ir_max_shared should be big enough to contain all IR

indexes. Most Service Manager systems have several large IR index files such as

ir.probsummary, ir.incidents or ir.cm3r. The ir_max_shared parameter can be set to

the sum of the size of these large indexes. You can find out the size of each index by running

vrir under sm -util. The shared_memory parameter value should be set to the sum of

ir_max_shared and recommended shared memory base size.

For example, if you have two hosts running horizontally scaled and ir.probsummary is 90% of

all IR indexes and you have two SM Server processes running on each host to serve 100 users per

host. First find out the size of the probsummary IR index by running vrir in sm -util:

----vrir report in sm.log(pid, thread id and time stamp are omitted)---

RTE I *** 512 bytes allocated for IR header

RTE I *** 320072 bytes allocated for hashtables

RTE I *** 5764/ 5633 bytes allocated/used by DOCs

RTE I *** 10708/ 10360 bytes allocated/used by TERMs

RTE I *** 16694/ 12529 bytes allocated/used by DOCLISTs

RTE I *** 0/ 0 bytes allocated/used by ADL DOCLISTs

RTE I *** 17648/ 15884 bytes allocated/used by TERMLISTSs

RTE I *** 0/ 0 bytes allocated/used by ADL TERMLISTSs

RTE I *** 0 bytes free total according to IR header

RTE I *** 320584 bytes used by physical file according to IR header

The ir_max_shared parameter should be set to 371398, which is the sum of IR header,

hashtables, DOCs, TERMs, DOCLISTs, ADL DOCLISTs, TERMLISTSs, and ADL TERMLISTSs + 10% for

46

the other IR files adding up to a total of 408537.8. The shared memory base size, in this example,

is 32MB so shared memory should be set to 32,000,000 + 408537.8 = 32408537.8. Therefore,

the sm.ini file in each host in the horizontal group contains the following parameters and values

(rounded):
--- sm.ini ---

shared_memory:32408538

ir_max_shared:408538

(other SM parameters for horizontal scaling)

Tuning Database Queries

Queries that are frequently used should always be fully indexed. It is not practicable – nor does it

improve performance – to index every possible query with every possible combination of fields. A

badly keyed query increases CPU usage and takes a long time to return results.

General Database Tuning hints

 When writing a query, it is more efficient to use “=” (equal) rather than “#” (starts with). This

includes stored queries, views, globallist queries, link queries, and so forth. When Service

Manager automatically generates a query, it defaults to “#”. In cases where an “=” (equal) query

meets the requirements, change all “#” operators to “=”.

 When a search is performed from a search screen, the order of the fields in the query is based on

the order of the fields in the dbdict.

 Perform checks of the sm.alert.log regularly to find frequently used inefficient queries and add

indexes to your tables / dbdicts accordingly.

 Perform Database Maintenance on a regular basis. On an RDBMS that means run analyze

regularly and use monitoring tools to check for performance.

Tuning queries by Background Processes

Most background processes issue pre-defined queries that are keyed out-of-box. The following

background processes issue custom queries regularly:

 Agent

 Marquee

 Lister

To minimize CPU use make sure that these background processes execute only when needed and not

too frequently.

First, determine which queries that are frequently issued by background processes are really needed.

Since the Agent and Marquee processes were used to create charts and marquee messages that can

no longer be viewed using the windows or web clients, it is recommended to not run their schedule

records by setting the expiration to a date far in the future. Only the Count USER Connections and

Count SYSTEM Connections agent records need to be running in Service Manager.

Next check which globallists use queries other than true queries.

Click Utilities –> Tools –> Global Lists and perform the following advanced search:

sql~="true" and build.startup=true

This search returns all globallist records that are in use that use a query other than “True”. Go

through this list and ensure that custom-made globallists are still used (otherwise change build.startup

to “false” to disable them). Next check the database table on the RDBMS for the Filename stated in

the globallist to determine whether the fields used in the globallist query are indexed, as shown

above. The keys in the dbdict should always mirror the indexes on the related tables on the RDBMS.

47

Tuning frequently used foreground queries

The most frequently used foreground queries are user views and favorites, including charts. When

creating a view, favorite, or chart as an administrator, always ensure that the query is well formed

and keyed. If users have the rights to create their own views, favorites, and charts, analyze the inbox

table regularly to either modify or remove queries that negatively impact search performance. Make

sure to educate users on how to create a well formed and keyed query. If you identify identical

commonly used personal views, change them to a single public view.

Guide users through free-form searches, such as color-coding keyed fields that will help with query

performance or removing fields from the search form that are not included in a key. Advise users to

use at least one of the keyed fields in their searches. When IR searches are available, remove the

deep search option for performance reasons.

Additionally, queries in links and formatcontrol are executed on a regular basis and should always be

well-keyed, as discussed in the Format Control and Links sections of this document.

Tuning database behavior

It is very important to index all frequently used queries that are issued against the database,

regardless of which database is used. Out of the box, unique keys in Service Manager are often

mapped as unique keys in the RDBMS. In that case, change all unique keys on the RDBMS to

primary keys, so that they do not allow NULLS (where the unique key in Service Manager = no

NULLS, no duplicates).

Whenever possible, put the indexes and data into different tablespaces and, if possible, on different

disks for faster data access.

Important: When creating queries in links, views and favorites, or stored queries, minimize the use

of Service Manager functions such as index(). Service Manager functions that do not translate to

SQL will cause a full table scan whenever they are part of a query. Operators that are safe to use

are:

= , #, LIKE, ISIN

In addition, use the tuning tips below to get better response times from your database:

Detailed information about setting up the databases that Service Manager supports (DB2®,

Oracle®,and Microsoft® SQLServer®) can be found in Appendix A of this document

General RDBMS tuning tips:

 Indexes should be considered on all columns that are frequently used by the WHERE or the ORDER

BY clauses. Consider carefully which indexes to add on a table since too many indexes can be as

detrimental as having too few.

 An index is best if the WHERE clause of the query matches the column(s) that are leftmost in the

index. When you create an index with a composite key, the order of the columns in the key is

important. Try to order the columns in the key to enhance selectivity, with the most selective

columns to the leftmost of the key.

 Do not accidentally add the same index twice on a table.

 Drop indexes that are not used.

 Optimize the server kernel. Always tune your disk and network I/O subsystem (RAID, DASD

bandwidth, network) to optimize the I/O time, network packet size, and dispatching frequency.

 Adjust your optimizer statistics. Always collect and store optimizer statistics to allow the optimizer

to learn more about the distribution of your data and to make more intelligent execution plans.

 Remove large-table full-table scans. Unnecessary full-table scans cause a huge amount of I/O and

can drag-down an entire database. The tuning expert first evaluates the SQL based on the number

of rows returned by the query. If the query returns fewer than 40 percent of the table rows, it needs

tuning. The most common tuning remedy for full-table scans is to add indexes.

48

 Cache small-table full-table scans. In cases where a full-table scan is the fastest access method, the

administrator should ensure that a dedicated data buffer is available for the rows.

 Verify optimal index usage. This is especially important when using the optimizer.

 Use the latest out-of-box sqldbinfo file that matches your database type. Do not modify the

sqldbinfo file unless you are told to do so by HP Software Customer Support. Additionally,

always use the same database type on all converted tables. Using different database types (such

as DB2 and DB2Universal) within one system will cause more database connections on the RDBMS.

The Oracle® database

The Oracle database gives the database administrator several ways to optimize performance. Some

parameters are listed below:

 Adjust optimizer parameters. These include optimizer_mode, optimizer_index_caching,

optimizer_index_cost_adj.

o Beginning with Oracle 10g, the default optimizer mode is all_rows, favoring full-table

scans over index access. The all_rows optimizer mode is designed to minimize

computing resources and it favors full-table scans. Index access (first_rows) adds

additional I/O overhead but returns rows faster back to the originating query.

Service Manager’s sqloptimizerrows parameter can force the optimizer mode for

versions up to Oracle 10: 0 (Use Oracle default), 1 (Optimizer goal is

FIRST_ROWS), >1 (Optimizer goal is ALL_ROWS)

 Optimize your instance. Your choice of db_block_size, db_cache_size, and operating system

parameters (db_file_multiblock_read_count, cpu_count, and so forth), can influence SQL

performance.

 Cache small-table full-table scans. In cases where a full-table scan is the fastest access method, the

administrator should ensure that a dedicated data buffer is available for the rows. In Oracle

Database 8 and greater, the small table can be cached by forcing it into the KEEP pool.

 Identify high-impact SQL by checking the executions column of the v$sqlarea view. The

stats$sql_summary or the dba_hist_sql_summary table can be used to locate the most frequently

used SQL

The SQL Server® database

Indexing

Without proper indexes, SQL Server performance will suffer. It is important to use the correct index

for each query, since badly selected indexes can slow down SQL Server performance. The following

general tips will help:

 Drop indexes that are never used by the Query Optimizer. To provide the up-to-date statistics the

query optimizer needs to make smart query optimization decisions, you will generally want to leave

the "Auto Update Statistics" database option on.

 Keep the "width" of your indexes as narrow as possible, especially when creating composite (multi-

column) indexes.

 The Query Optimizer will always perform a table scan or a clustered index scan on a table if the

WHERE clause in the query contains an OR operator, and if any of the referenced columns in the

OR clause is not indexed (or does not have a useful index). Because of this, if you use many

queries with OR clauses, ensure that each referenced column has an index.

 Periodically (weekly or monthly) perform a database reorganization on all the indexes on all the

tables in your database. A reorganization rebuilds the indexes so that the data is no longer

fragmented. Fragmented data can cause SQL Server to perform unnecessary data reads, slowing

down its performance.

The DB2® database

The default page size in DB2 UDB is 4096 bytes (4K). To attain best performance the DB2 table

space for Service Manager should be set to use 32768 byte (32K) pages. For this page size, a value

49

of 32000 for Maximum Row Size is best. This leaves room for DB2 overhead in each row while still

optimizing the way Service Manager uses available space.

Tuning tailoring

Tailoring can greatly influence the system’s performance, both in memory and CPU usage.

To minimize memory usage, make sure to use local variables whenever possible and use the

cleanup() function on thread and global variables when they are no longer needed. Local

variables are indicated by $L.<name>; global variables start with $G.<name> or $lo.<name>; all

other variables are thread variables. Local variables are available only in the RAD application where

they were declared; global variables are available to the user throughout the system; and thread

variables are available until you leave the thread (or in simpler terms, leave the notebook tab in the

client).

Tuning forms

It is important to tune forms that are displayed to the end user, since large forms use more memory

and take longer to display to the user. Use of DVD (Dynamic View Dependency) functionality can

slow down form display as well, so it is very important to use DVD efficiently.

There are 2 different kinds of DVD statements:

 Select Statements used in dropdown lists. Select statements are used to limit the values in a

dropdown list based on information that was previously entered in the record. These select

statements are executed whenever the form is brought up or refreshed, such as when returning from

a link. Since these select statements are executed very frequently, it is of utmost importance that

they are keyed and efficient. Do not put too many DVD select statements on any one form, since

they add load to the database and to the Service Manager server. There are two possible

alternatives to select DVD statements:

o Globallists: If the select statement is not directly dependent on another field that was

entered, a global variable defined in the globallists file is most efficient. If the

value is dependent on the user’s Mandanten restrictions, a global variable built via

Format Control can replace the DVD statement.

o Links: If the value of a drop down list is dependent on the value of a previously

entered field, a recursive link is the most efficient choice. The link query can then

determine the subset of values from which to select. Again, make sure that the link

query is efficient and keyed.

Of course, select DVD statements can be used in moderation and are best for queries that return a

small subset of records.

 Conditional statements used in Visible, ReadOnly and other conditional properties. Conditional

DVD statements are executed whenever the form is displayed or refreshed. It is more efficient to

have customer-specific subforms than to use excessive DVD statements. For example, users with a

certain capability word can change a set of fields; and other users can only view these values. If

you create two subforms with these fields on it, one for the first group, the other for the second

group, you can dynamically change the subform name based on the user’s capability word and do

not need to use any conditional DVD statements. More information about setting up dynamic

subforms can be found in the white paper Best Practices for Multi-Tenant Environments using Service

Manager .

Note: For best client performance, minimize the number of drop-down fields and content of drop-

down lists on the form. The form is translated into xml and then sent to the client, with all drop-down

values and other available elements on it. If the form is too large, this will cause slow performance.

The following items contribute to the size of the form:

 Number of fields on the form

 Number of DVD statements on the form

http://support.openview.hp.com/selfsolve/document/KM434516
http://support.openview.hp.com/selfsolve/document/KM434516

50

 Size of Globallists used in dropdowns. For example, if a dropdown uses a globallist with 1000

elements, all these elements are included in the xml that is sent to the client.

Format Control

A lot of tailoring in Service Manager is done in Format Control. Since Format Control statements are

evaluated on each execution of Format Control and are not compiled objects, it is very important to

set the conditions in Format Control (execution on add, update, delete, display, initial) only for the

times that the FormatControl statement needs to be executed. For easiest maintenance, HP Software

recommends that you put the tailoring statements that are true for all accesses in that module in the

master format control (such as cm3r, probsummary, and so forth); and put only the form-specific

tailoring into the detail format control (such as cm3r.hardware, IM.template.close, and so forth).

Although moving tailoring to the master records does not improve performance per se, it does

minimize both the size of the detail FormatControl records and data redundancy.

Format Control is executed at the following times:

Add Before adding the record to the database

Update Before updating the record in the database

Delete In Change and Request Management: On close processing of the record, others: when deleting the record from

the database

Display Every time the record is displayed: on initial display, on screen refreshs, and upon coming back from fills

Initial Before bringing up the record for display for the first time

Tuning Queries

Since Format Control queries are executed very frequently, it is important to verify that these queries

are indexed correctly. See the section Tuning Database Queries on page Tuning Database

Queries46 for more information about indexing queries correctly.

Ensure that queries are executed only when needed. If the resulting file variable from a query is used

in add and update statements, execute the query only on add and update operations. If the results

are used only on the initial display to fill a field with default values, execute the query only on initial.

By doing so, calls to the database are minimized.

Periodically check if the queries are still needed. If a statement is removed from calculations, make

sure to remove all related statements as well.

Tuning Calculations

Whenever you perform tailoring and during upgrades, verify that the calculation statements are still

being used. If not, remove the Format Control line completely. CPU usage increases and decreases

depending on how many statements are executed.

Ensure calculations are only executed when needed. To fill initial values, the Format Control should

only be executed on initial. To set mandatory values or to overwrite fields, execute on add and

update only.

Tuning Subroutines

Check periodically if the subroutine is still needed. If it is not needed, remove it from the Format

Control record. As with all Format Control tailoring, only call the subroutines when needed, typically

on add and update.

Data Validation – which one when

We have three different ways to do data validation:

 Format Control

 Data Policy

51

 Data Validation (called from Format Control typically)

Data Policy can be used to set a default value, set a field to be mandatory or to validate a field value

against values in an existing file. Data Policy is evaluated for every record in the table, independent

on which form the record was displayed in.

Format Control validations can be used both for expression based validations (validations section)

and verification that the entered value matches a value in an existing table (query section). Format

Control is available for all access to the table (master Format Control) or on a form-by-form basis.

Data Validation is typically called from Format Control subroutines. It is the most versatile of all

validation methods. It can present users with a list of valid entries on failed validation, it can verify

that the entry matches a value in an existing table, it can call a RAD application for validation, and it

can determine how to proceed if no valid record was found.

JavaScript® / ScriptLibrary

JavaScript code is integrated within Service Manager and can be used for tailoring in Format Control,

Triggers, via the ScriptLibrary, Links, and so forth. To best use JavaScript in Service Manager, make

the programs as simple as possible, use existing variables and functions rather than re-creating

functionality. Plan the variables and the code in detail to avoid overhead. Sometimes, programming

functionality takes less code in the Service Manager language than in JavaScript, sometimes

JavaScript is more efficient. Always use the language that needs the least number of statements to

perform the job. It is possible in most cases to mix and match both, such as in Format Control,

calculate variables in JavaScript and then utilize them in Calculations.

Scripts

Scripts often use variables that are passed through the different steps. It is more efficient to use the

file variable and fill fields in the file variable directly, rather than use variables first that then are

written into the file variable. If you use thread or global variables specifically for the script, use the

cleanup() function in the last step to ensure that the memory is freed again. Try to keep the amount of

script records in the script process to a minimum and plan the statements and RAD applications for

best efficiency.

Wizards

Wizards are a very powerful tailoring tool, providing the functionality of a script by stepping through

different panels based on conditions; and in being able to call Processes, FormatControl, and execute

expressions. Wizards have a tab called “cancel expressions”. Always use this tab to clean up

variables, since most variables used in wizards are thread or global variables. This is needed

because wizards execute many applications, and local variables are not available throughout. In

wizards as in scripts, plan the workflow in detail to prevent infinite loops.

Links

Queries in links are executed frequently and may use elaborate concatenated statements, so it is very

important to have them indexed correctly. When concatenating query statements, make sure not to

duplicate a query against a single field such as: company=”Test” and company=”Test”. Try to

concatenate the query so that the most limiting field is the leftmost field in the query (such as

company=”Test” and contact#”A” – where fewer people work for company “Test” than have a name

starting with “A”).

Minimize the statements in the link pre- and post expressions and minimize the use of elaborate

JavaScript. Enter only statements that directly affect which records the link will return.

Display

The display application is responsible for displaying a record to the user, including all options

available to the user on that record. For best performance and usability, disable display option

records that users do not need by giving them a user condition of false. Minimize statements on the

display screen. Display Events can be used to trigger an event when the user clicks or modifies a

52

value on a form. Use Display Events sparingly, since they will be checked whenever the user enters

information into the form.

Document Engine

The Document Engine is the central tool that handles all Service Manager transactions. Tailoring is

mostly done in the Process records calling an initial Process to set information about the format to

display, or adding and modifying Processes to execute statements and RAD applications. When

tailoring the Document Engine, make sure to use unique names for the Process records for later

upgrades. Use existing variables whenever possible and clean up thread and global variables that

are no longer used.

Tuning integrations

Service Manager has three methods of exchanging data with third-party applications:

 SCAuto

 Connect-It

 Web Services.

All three are used for the bi-directional exchange of data. SCAuto and Connect-It use a pre-defined

set of integrators. Web Services can integrate with any Web Services application. Connect-It is best

used for scheduled data transfer, whereas SCAuto and Web Services are typically interaction-based.

Connect-It and SCAuto use Event Services with eventmaps for moving data into and out of Service

Manager. For best performance, put into the event maps only those fields that need to be moved to

and from the third party product. Use only keyed queries in the event registration and try to transport

only records that need to be moved.

Web Services uses the SOAP API to get data into and out of Service Manager. Service Manager

exposes fields via the External Access information. Consuming Web Services are executed within

Service Manager via JavaScript. Exposing a Service Manager Web Service uses Document Engine

States and Processes to define the actions. For consuming Web Services, make sure to write the

JavaScript code as efficiently as possible, minimizing the number of statements used, and making sure

that all possible error situations are covered. For exposing Web Services, limit the numbers exposed

in the extaccess table to only the required fields and follow the steps discussed in the Document

Engine tuning section in this document. For more information on tuning web services, refer to the Web

Services - Service Manager as Web Services provider section of this document.

Regular Maintenance

Backups

Back up your data at least daily, using RDBMS tools when the data is converted to an RDBMS. Test

your backups at least monthly to ensure data integrity.

Purging and Archiving

The following files should be purged (and archived if required by your business process) on a regular

basis:

 mail

 msglog

 syslog

 spool

 eventin

53

 eventout

 devaudit (on a production system, development auditing should be turned off)

The following files should be archived and purged on an as-required basis. If information in the files

needs to be available to users after they were purged from the primary dbdict, you can create an

archive<name> dbdict for the data as a copy of the original dbdict. Use the copy.file application

to copy (project) the information from the primary dbdict to the archive<name> dbdict and make the

archive dbdict available to a subset of users for searching.

 probsummary

 problem

 screlation

 work

 activity

 SYSATTACHMENTS

 cm3r

 cm3rpage

 cm3t

 cm3tpage

 cmcalendar

 ApprovalLog

 AlertLog

 incidents

 activityservicemgmt

 ocml

 ocmq

 ocmo

 clocks

 cmlabor

 cmparts

 activityknownerror

 activityproblem

 activityproblemtask

 knownerror

 rootcause

 rootcausetask

 audit

 contract

 curconvert

 kmsearchhistory

 kmusagehistory

 kmstats

The following files should be monitored when in use:

 sqlqueue

 irqueue

54

Log file maintenance

Both the sm.log and the sm.alert.log files may grow very large if not monitored and cleaned up

occasionally. Parameters in the sm.ini file allow for size-based rolling of the sm.log file, which

should be set to about 10 MB, and a history of 2 - 3 log files to keep. The sm.alert.log file

cannot be rolled automatically and should be cleaned up manually about once a month. Alert

filtering, which is discussed in the section sm -alertfilters on page12, can be used to minimize output

to the sm.alert.log file as well.

55

Appendix A

Optimizing Service Manager performance on the RDBMS

Service Manager provides a variety of options for mapping your data to an RDBMS. This section

discusses how to optimize your mapping for pure performance and reporting simplicity. Some tables

may be optimized for speed, some may be optimized for reporting, depending on their primary use.

The out-of-box mapping is optimized for speed only.

For RDBMS specific tuning procedures, please refer to your RDBMS vendor documentation.

Optimizing for speed

Minimize tables and rows in a mapped record

To optimize your Service Manager RDBMS implementation for speed means reducing physical reads

on the RDBMS server. Generally speaking, Service Manager will fetch a single complete Service

Manager record from your RDBMS database. To optimize the speed of this process, it is important to

place a Service Manager record in as few rows in as few tables as possible.

If speed is an important issue, map arrays of characters either as CLOB fields or BLOB fields in the

main RDBMS table.

Index efficiently

Service Manager does not usually place an extremely high update/insert transaction load on an

RDBMS server. Most of the interactions with the RDBMS database involve simple single-row selects.

You can improve the speed of these selects by indexing your RDBMS tables efficiently. Avoid the

temptation to under-index; this may speed updates or inserts, but slows retrieval.

Optimizing for reporting

Since the out-of-box system is optimized for speed, you may need to remap tables for reporting, or for

best results create a reporting data store (RDS) that meets the reporting needs.

Avoid binary data

Store arrays upon which you want to report as either long text fields or as separate array tables. If

you choose to use CLOB fields, check to ensure that your reporting package can handle the data in

question.

Know how arrays are used

Service Manager will map an array of numbers as a long text field, but will not perform row

aggregate functions against the contents of that array. For example, if you map an array containing

35 price quotes for a PC into a long text field, you are unable to select out the maximum, the

minimum, or the mean price quote using the standard SQL syntax.

Generally speaking, you should map arrays on which you will need to perform row–level functions as

array tables.

Service Manager modifications

Multiple tables

Service Manager supports vertical field splitting within a file. In other words, one Service Manager

file, for example, the example file can map to multiple tables: fields 1, 3, and 7 in file examplem1,

fields 2, 4, and 5 in file examplem2, and field 6 in file examplea1. Having too many different tables

will negatively impact performance due to the additional queries and joins required to retrieve the

complete record.

Tuning indexes

To tune indices:

1. Determine which indexes are not being used, and drop them.

2. Look at long-running queries and add indexes where needed

56

Note: You can also locate long-running queries by looking for sqllimit exceeded messages in the

Service Manager sm.log file.

For more information

Please visit the HP Software support Web site at:

www.hp.com/go/hpsoftwaresupport

This Web site provides contact information and details about the products, services, and support that

HP Software offers.

HP Software online software support provides customer self-solve capabilities. It provides a fast and

efficient way to access interactive technical support tools needed to manage your business. As a

valued customer, you can benefit by being able to:

 Search for knowledge documents of interest

 Submit and track progress on support cases

 Submit enhancement requests online

 Download software patches

 Manage a support contract

 Look up HP support contacts

 Review information about available services

 Enter discussions with other software customers

 Research and register for software training

Note: Most of the support areas require that you register as an HP Passport user and sign in. Many

also require an active support contract.

To find more information about support access levels, go to the following URL:

www.hp.com/go/hpsoftwaresupport/new_access_levels

To register for an HP Passport ID, go to the following URL:

www.hp.com/go/hpsoftwaresupport/passport-registration

Technology for better business outcomes

© Copyright 2009 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial
errors or omissions contained herein.

Linux is a U.S. registered trademark of Linus Torvalds. Microsoft and Windows are
U.S. registered trademarks of Microsoft Corporation. UNIX is a registered
trademark of The Open Group. JavaScript is a registered trademark of Sun
Microsystems, Inc. in the United States and other countries. Oracle is a registered
trademark of Oracle Corporation and/or its affiliates

http://www.hp.com/go/hpsoftwaresupport
outbind://126/www.hp.com/go/hpsoftwaresupport/new_access_levels
outbind://126/www.hp.com/go/hpsoftwaresupport/passport-registration

